Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
question-generation
License:
""" Script to process raw SQuAD file for Question Generation format | |
You need to run `python -m spacy download en_core_web_sm`. | |
Split when uploading to dataset hub by | |
``` | |
gsplit -l 1500 -d --additional-suffix=.jsonl default.train.jsonl default.train | |
``` | |
""" | |
import json | |
import os | |
import re | |
import pandas as pd | |
import spacy | |
SPLITTER = spacy.load('en_core_web_sm') | |
HIGHLIGHT_TOKEN = '<hl>' | |
def get_sentence(document: str): | |
return [str(s) for s in SPLITTER(document).sents] | |
def process_single_data(question, paragraph, answer): | |
""" Convert single raw json data into QG format """ | |
example = {'question': question, 'paragraph': paragraph, 'answer': answer} | |
start = example['paragraph'].find(example['answer']) | |
end = start + len(answer) | |
assert paragraph[start:end] == answer | |
# get sentence | |
before_tmp = get_sentence(example['paragraph'][:start]) | |
if len(before_tmp) == 0: | |
before = '' | |
before_sentence = '' | |
else: | |
if before_tmp[-1].endswith('.'): | |
before = ' '.join(before_tmp) | |
before_sentence = '' | |
else: | |
before = ' '.join(before_tmp[:-1]) | |
before_sentence = before_tmp[-1] | |
before_sentence = before_sentence if before_sentence.endswith(' ') else '{} '.format(before_sentence) | |
after_tmp = get_sentence(example['paragraph'][start + len(example['answer']):]) | |
if len(after_tmp) == 0: | |
after = '' | |
after_sentence = '' | |
else: | |
after = ' '.join(after_tmp[1:]) | |
after_sentence = after_tmp[0] | |
after_sentence = after_sentence if after_sentence.startswith(' ') else ' {}'.format(after_sentence) | |
example['sentence'] = '{}{}{}'.format(before_sentence, example['answer'], after_sentence) | |
# get paragraph_sentence | |
before = '' if before == '' else '{} '.format(before) | |
after = '' if after == '' else ' {}'.format(after) | |
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after) | |
example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text) | |
# get paragraph_answer | |
source_text = '{0}{1} {2} {1}{3}'.format( | |
example['paragraph'][:start], HIGHLIGHT_TOKEN, example['answer'], | |
example['paragraph'][start + len(example['answer']):]) | |
example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text) | |
# get sentence_answer | |
if len(before_tmp) == 0 or before_tmp[-1].endswith('.'): | |
before = '' | |
else: | |
before = before_tmp[-1] if before_tmp[-1].endswith(' ') else '{} '.format(before_tmp[-1]) | |
if len(after_tmp) == 0: | |
after = '' | |
else: | |
after = after_tmp[0] if after_tmp[0].startswith(' ') else ' {}'.format(after_tmp[0]) | |
source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after) | |
example['sentence_answer'] = re.sub(r'\s+', ' ', source_text) | |
return example | |
if __name__ == '__main__': | |
os.makedirs('./data/processed', exist_ok=True) | |
for i in ["books", "electronics", "grocery", "movies", "restaurants", "tripadvisor"]: | |
for s in ["dev.csv", "test.csv", "train.csv"]: | |
df = pd.read_csv(f'SubjQA/SubjQA/{i}/splits/{s}') | |
df = df[[x != 'ANSWERNOTFOUND' for x in df['human_ans_spans']]] | |
df['review'] = [x.replace('ANSWERNOTFOUND', '') for x in df['review']] | |
output = [] | |
for _, _g in df.groupby('q_review_id'): | |
if any(i == 'ANSWERNOTFOUND' for i in _g['human_ans_spans']): | |
continue | |
# if len(_g["human_ans_spans"].unique()) != 1: | |
# continue | |
# _df = _g.iloc[0] | |
_len = [len(i) for i in _g["human_ans_spans"]] | |
_df = _g.iloc[_len.index(max(_len))] | |
start, end = eval(_df['human_ans_indices']) | |
# if re.sub(r'[\s\W]', '', _df['review'][start:end]) != re.sub(r'[\s\W]', '', _df["human_ans_spans"]): | |
# input(f"{_df['review'][start:end]} != {_df['human_ans_spans']}") | |
# continue | |
out = process_single_data(question=re.sub(r'\s+\?', '?', _df['question']), | |
answer=_df['review'][start:end], | |
paragraph=_df['review']) | |
out['question_subj_level'] = int(_df['question_subj_level']) | |
out['answer_subj_level'] = int(_df['answer_subj_level']) | |
out['paragraph_id'] = _df['review_id'] | |
out['domain'] = _df['domain'] | |
output.append(out) | |
with open(f'./data/processed/{i}.{s.replace(".csv", ".jsonl")}', 'w') as f: | |
f.write('\n'.join([json.dumps(i) for i in output])) | |
# for s in ["dev", "test", "train"]: | |
# output = [] | |
# for i in ["books", "electronics", "grocery", "movies", "restaurants", "tripadvisor"]: | |
# with open(f'./data/processed/{i}.{s}.jsonl', 'r') as f: | |
# output += [json.loads(i) for i in f.read().split('\n') if len(i) > 0] | |
# with open(f'./data/processed/default.{s}.jsonl', 'w') as f: | |
# f.write('\n'.join([json.dumps(i) for i in output])) | |