import pandas as pd | |
import numpy as np | |
import wfdb | |
import ast | |
def load_raw_data(df, sampling_rate, path): | |
if sampling_rate == 100: | |
data = [wfdb.rdsamp(path+f) for f in df.filename_lr] | |
else: | |
data = [wfdb.rdsamp(path+f) for f in df.filename_hr] | |
data = np.array([signal for signal, meta in data]) | |
return data | |
path = 'path/to/ptbxl/' | |
sampling_rate=100 | |
# load and convert annotation data | |
Y = pd.read_csv(path+'ptbxl_database.csv', index_col='ecg_id') | |
Y.scp_codes = Y.scp_codes.apply(lambda x: ast.literal_eval(x)) | |
# Load raw signal data | |
X = load_raw_data(Y, sampling_rate, path) | |
# Load scp_statements.csv for diagnostic aggregation | |
agg_df = pd.read_csv(path+'scp_statements.csv', index_col=0) | |
agg_df = agg_df[agg_df.diagnostic == 1] | |
def aggregate_diagnostic(y_dic): | |
tmp = [] | |
for key in y_dic.keys(): | |
if key in agg_df.index: | |
tmp.append(agg_df.loc[key].diagnostic_class) | |
return list(set(tmp)) | |
# Apply diagnostic superclass | |
Y['diagnostic_superclass'] = Y.scp_codes.apply(aggregate_diagnostic) | |
# Split data into train and test | |
test_fold = 10 | |
# Train | |
X_train = X[np.where(Y.strat_fold != test_fold)] | |
y_train = Y[(Y.strat_fold != test_fold)].diagnostic_superclass | |
# Test | |
X_test = X[np.where(Y.strat_fold == test_fold)] | |
y_test = Y[Y.strat_fold == test_fold].diagnostic_superclass | |