--- language: - en license: mit tags: - image-classification - computer-vision task_categories: - image-classification task_ids: - multi-class-image-classification dataset_info: features: - name: image dtype: array3_d: shape: - 128 - 128 - 3 dtype: uint8 - name: label dtype: class_label: names: '0': cats '1': dogs splits: - name: train num_bytes: 921696000 num_examples: 8000 - name: test num_bytes: 230424000 num_examples: 2000 download_size: 487392383 dataset_size: 1152120000 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # Cats and Dogs Image Classification Dataset This dataset contains images of cats and dogs, intended for image classification tasks. It includes two classes: "cats" and "dogs". ## Dataset Structure The dataset is structured into two splits: * **train**: Contains 8000 images for training. * **test**: Contains 2000 images for testing. Images are stored in RGB format with a resolution of 128x128 pixels. ## Data Loading and Usage The dataset can be loaded using the Hugging Face Datasets library: ```python from datasets import load_dataset dataset = load_dataset("cats_dogs_dataset") This will return a DatasetDict object with the train and test splits. Example Usage Python from datasets import load_dataset dataset = load_dataset("cats_dogs_dataset") # Access the first training example example = dataset["train"] # Print the image and label print(example["image"]) print(example["label"])