Datasets:
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PsyQA dataset.""" | |
import json | |
import os | |
import datasets | |
_DESCRIPTION = """ FutureWarning | |
""" | |
_CITATION = """ null """ | |
_URLs = { | |
"train": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/train.json", | |
"valid": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/valid.json", | |
"test": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/test.json", | |
} | |
class PsyQA(datasets.GeneratorBasedBuilder): | |
"""PsyQA dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="plain_text", | |
description="Plain text", | |
version=VERSION, | |
) | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"question": datasets.Value("string"), | |
"questionID": datasets.Value("int16"), | |
"description": datasets.Value("string"), | |
"keywords": datasets.Value("string"), | |
"answer": datasets.Value("string"), | |
"has_label": datasets.Value("bool"), | |
"label_sequence":datasets.features.Sequence( | |
{ | |
"start": datasets.Value("int16"), | |
"end": datasets.Value("int16"), | |
"type": datasets.Value("string"), | |
} | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://huggingface.co/datasets/siyangliu/PsyQA", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": data_dir["train"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": data_dir["test"], | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": data_dir["valid"], | |
}, | |
), | |
] | |
def _generate_examples(self, input_filepath, label_filepath=None): | |
"""Yields examples.""" | |
with open(input_filepath, encoding="utf-8") as input_file: | |
dataset = json.load(input_file) | |
idx = 0 | |
for meta_data in dataset: | |
for ans in meta_data["answers"]: | |
yield idx, {"question": meta_data["question"], "description": meta_data["description"], "keywords": meta_data["keywords"], "answer": ans["answer_text"], \ | |
"label_sequence": ans["label_sequence"], "questionID": meta_data["questionID"], "has_label": meta_data["has_label"],} | |
idx += 1 | |