|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""reddit_mhp dataset.""" |
|
|
|
|
|
import json |
|
import os |
|
import datasets |
|
|
|
|
|
|
|
_DESCRIPTION = """ FutureWarning |
|
""" |
|
_CITATION = """ null """ |
|
_URLs = { |
|
"train": "https://huggingface.co/datasets/siyangliu/reddit_mhp/resolve/main/train.json", |
|
"valid": "https://huggingface.co/datasets/siyangliu/reddit_mhp/resolve/main/valid.json", |
|
"test": "https://huggingface.co/datasets/siyangliu/reddit_mhp/resolve/main/test.json", |
|
} |
|
|
|
|
|
|
|
class redditMHP(datasets.GeneratorBasedBuilder): |
|
"""redditMHP dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="plain_text", |
|
description="plain text", |
|
version=VERSION, |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"question": datasets.Value("string"), |
|
"questionID": datasets.Value("string"), |
|
"description": datasets.Value("string"), |
|
"topic": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"answerID": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://huggingface.co/datasets/siyangliu/reddit_mhp", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"] |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"] |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["valid"] |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, label_filepath=None, strategy=False): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as input_file: |
|
dataset = json.load(input_file) |
|
idx = 0 |
|
for meta_data in dataset: |
|
yield idx, {"question": meta_data["question"], "description": meta_data["description"], "questionID":meta_data['post_id'], "answerID": meta_data["comment_id"], "answer": meta_data["answer"], "topic":meta_data["topic"]} |
|
idx += 1 |
|
|
|
|