Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
File size: 5,562 Bytes
7165b6e
 
798b114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7165b6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f65f74
df4e219
7165b6e
df4e219
 
7165b6e
798b114
 
 
 
7165b6e
 
0f65f74
 
7165b6e
10f2771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b310a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
dataset_info:
- config_name: '1.0'
  features:
  - name: instance_id
    dtype: string
  - name: version
    dtype: string
  - name: gold_patches
    struct:
    - name: code
      dtype: string
    - name: test
      dtype: string
  - name: test_patch
    dtype: 'null'
  - name: pre_patches
    struct:
    - name: code
      dtype: string
    - name: test
      dtype: string
  - name: pre_scripts
    dtype: 'null'
  - name: repo
    dtype: string
  - name: base_commit
    dtype: string
  - name: base_commit_timestamp
    dtype: string
  - name: hints_text
    dtype: 'null'
  - name: created_at
    dtype: 'null'
  - name: problem_statement
    struct:
    - name: code
      dtype: string
    - name: test
      dtype: string
  - name: environment_setup_commit
    dtype: string
  - name: evaluation
    struct:
    - name: FAIL_TO_PASS
      sequence: string
    - name: PASS_TO_PASS
      dtype: 'null'
  splits:
  - name: test
    num_bytes: 75055139
    num_examples: 200
  download_size: 20308767
  dataset_size: 75055139
- config_name: default
  features:
  - name: instance_id
    dtype: string
  - name: version
    dtype: string
  - name: gold_patches
    struct:
    - name: code
      dtype: string
    - name: test
      dtype: string
  - name: test_patch
    dtype: 'null'
  - name: pre_patches
    struct:
    - name: code
      dtype: string
    - name: test
      dtype: string
  - name: pre_scripts
    dtype: 'null'
  - name: repo
    dtype: string
  - name: base_commit
    dtype: string
  - name: base_commit_timestamp
    dtype: string
  - name: hints_text
    dtype: 'null'
  - name: created_at
    dtype: 'null'
  - name: problem_statement
    struct:
    - name: code
      dtype: string
    - name: test
      dtype: string
  - name: environment_setup_commit
    dtype: string
  - name: evaluation
    struct:
    - name: FAIL_TO_PASS
      sequence: string
    - name: PASS_TO_PASS
      dtype: 'null'
  splits:
  - name: test
    num_bytes: 75055139
    num_examples: 200
  download_size: 20308767
  dataset_size: 75055139
configs:
- config_name: '1.0'
  data_files:
  - split: test
    path: 1.0/test-*
- config_name: default
  data_files:
  - split: test
    path: data/test-*
---
# Can Language Models Replace Programmers? REPOCOD Says 'Not Yet'

Large language models (LLMs) have achieved high accuracy, i.e., more than 90 pass@1, in solving Python coding problems in HumanEval and MBPP. Thus, a natural question is, whether LLMs achieve comparable code completion performance compared to human developers? Unfortunately, one cannot answer this question using existing manual crafted or simple (e.g., single-line) code generation benchmarks, since such tasks fail to represent real-world software development tasks. In addition, existing benchmarks often use poor code correctness metrics, providing misleading conclusions.

To address these challenges, we create REPOCOD, a code generation benchmark with 980 problems collected from 11 popular real-world projects, with more than 58% of them requiring file-level or repository-level context information. In addition, REPOCOD has the longest average canonical solution length (331.6 tokens) and the highest average cyclomatic complexity (9.00) compared to existing benchmarks. Each task in REPOCOD includes 313.5 developer-written test cases on average for better correctness evaluation. In our evaluations on ten LLMs, none of the models achieves more than 30 pass@1 on REPOCOD, disclosing the necessity of building stronger LLMs that can help developers in real-world software development.

For easier evaluation, we sample 200 of the hardest problems in REPOCOD to create REPOCOD-Lite, using the product of the prompt length and canonical solution length (in terms of line count) as an indicator of difficulty. From the three categories of questions—self-contained, file-level, and repo-level—we select 66, 67, and 67 samples respectively in descending order of the scores.

REPOCOD_Lite_Unified is a variation of REPOCOD-Lite that has a similar format as [SWE-Bench](https://www.swebench.com/) for easier integration into the established inference pipelines.

* For more details on data collection and evaluation results, please refer to our arxiv [preprint](https://arxiv.org/abs/2410.21647).

* Examples code for downloading repositories, preparing repository snapshot, and running test cases for evaluation are propived at [code](https://github.com/lt-asset/REPOCOD)

* Check our [Leaderboard](https://lt-asset.github.io/REPOCOD/) for preliminary results using SOTA LLMs with RAG.

* 
```

"instance_id": Instance ID in REPOCOD
"version": Version of REPOCOD
"gold_patches": {
    "code": Patch file to restore the target code,
    "test": Patch file to restore the relevant tests for the target code
}
"test_patch": None,
"pre_patches": {
    "code": Patch file to remove the target code,
    "test": Patch file to remove the relevant tests for the target code
}
"pre_scripts": None,
"repo": {GitHub User Name}/{Project Name}
"base_commit": base commit
"base_commit_timestamp": time of the base commit
"hints_text": None,
"created_at": None,
"problem_statement": {
    "code": Problem statement for code generation.
    "test": Problem statement for test generation.
}
# "problem_statement_source": "repocod",
"environment_setup_commit": base commit
"evaluation": {
    "FAIL_TO_PASS": list of relevant test cases
    "PASS_TO_PASS": None, (all remaining tests that passes, we choose not to run the PASS_TO_PASS tests to avoid the computational cost)
}

```