File size: 6,614 Bytes
ebf0fef
 
b0c88e0
 
d20a69b
ab89da9
ebf0fef
d20a69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0c88e0
 
 
 
 
d20a69b
 
 
 
8465804
d20a69b
 
 
 
 
 
 
8465804
d20a69b
ab89da9
d20a69b
 
 
 
f1ff5ac
d20a69b
 
 
 
 
8465804
 
d20a69b
 
 
 
8465804
 
d20a69b
1add07d
 
 
 
 
 
d20a69b
 
 
bf93cd4
2197934
21a446c
bf93cd4
 
4feab23
c235442
4feab23
d20a69b
 
bf93cd4
d20a69b
 
 
 
 
 
 
 
4feab23
0ed895a
d20a69b
 
 
ed988b1
d20a69b
 
 
 
 
 
 
 
ab89da9
d20a69b
8465804
 
d20a69b
e9448e9
 
0ed895a
 
72330f3
4feab23
 
0ed895a
4feab23
 
 
 
 
 
 
0ed895a
 
 
 
 
 
 
 
 
 
d20a69b
 
 
 
0ed895a
 
d20a69b
 
 
 
 
 
 
 
 
ebf0fef
 
 
 
 
0ed895a
ebf0fef
 
 
0ed895a
 
a5a0df3
1add07d
0ed895a
 
ab89da9
1add07d
4feab23
 
b0c88e0
4feab23
 
58ae851
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from typing import List, Dict

from PIL import Image
import numpy as np
import datasets
import pandas as pd
from datasets.download.streaming_download_manager import ArchiveIterable

_CITATION = """\
@article{koller2015continuous,
  title={Continuous sign language recognition: Towards large vocabulary statistical recognition systems handling multiple signers},
  author={Koller, Oscar and Forster, Jens and Ney, Hermann},
  journal={Computer Vision and Image Understanding},
  volume={141},
  pages={108--125},
  year={2015},
  publisher={Elsevier}
}

@inproceedings{koller2017re,
  title={Re-sign: Re-aligned end-to-end sequence modelling with deep recurrent CNN-HMMs},
  author={Koller, Oscar and Zargaran, Sepehr and Ney, Hermann},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={4297--4305},
  year={2017}
}
"""

_DESCRIPTION = """\
This archive contains two sets of the RWTH-Weather-Phoenix 2014 corpus

a) the multisigner set
b) the signer independent set.

The signing is recorded by a stationary color camera placed in front of the sign language interpreters. Interpreters wear dark clothes in front of an artificial grey background with color transition. All recorded videos are at 25 frames per second and the size of the frames is 210 by 260 pixels. Each frame shows the interpreter box only.
It is released under non-commercial cc 4.0 license with attribution.
"""

_HOMEPAGE = "https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX/"

_LICENSE = "CC BY-NC 4.0"

# Function to convert image file to numpy array
def image_to_numpy(file):
    image = Image.open(file)
    return np.array(image)


class RWTHPhoenixWeather2014Config(datasets.BuilderConfig):
    """BuilderConfig for RWTHPhoenixWeather2014Config."""

    def __init__(self, main_data_folder, corpus_file_suffix, **kwargs):
        """BuilderConfig for RWTHPhoenixWeather2014Config.
        Args:
          main_data_folder: name of the RWTHPhoenix variant folder.
          **kwargs: keyword arguments forwarded to super.
        """
        super(RWTHPhoenixWeather2014Config, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.main_data_folder = main_data_folder
        self.corpus_file_suffix = corpus_file_suffix


class RWTHPhoenixWeather2014(datasets.GeneratorBasedBuilder):
    """RWTH-PHOENIX-Weather 2014: Continuous Sign Language Recognition Dataset."""

    VERSION = datasets.Version("1.0.0")
    DEFAULT_WRITER_BATCH_SIZE = 25

    BUILDER_CONFIGS = [
        RWTHPhoenixWeather2014Config(
            name="multisigner",
            description="",
            main_data_folder="phoenix-2014-multisigner",
            corpus_file_suffix=".corpus.csv"
        ),
        RWTHPhoenixWeather2014Config(
            name="signerindependent",
            description="",
            main_data_folder="phoenix-2014-signerindependent-SI5",
            corpus_file_suffix=".SI5.corpus.csv"
        ),
        RWTHPhoenixWeather2014Config(
            name="pre-training",
            description="",
            main_data_folder="phoenix-2014-multisigner",
            corpus_file_suffix=".corpus.csv"
        ),
    ]

    def _info(self):
        features_dict = {
            "id": datasets.Value("string"),
            "transcription": datasets.Value("string"),
        }

        if self.config.name != "pre-training":
            features_dict["frames"] = datasets.Sequence(feature=datasets.Array3D(shape=(3, 224, 224), dtype="uint8"))

        return datasets.DatasetInfo(
            description=_DESCRIPTION + self.config.description,
            features=datasets.Features(features_dict),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        frames = {}
        other_data = {}

        dataDirMapper = {
            datasets.Split.TRAIN: "train",
            datasets.Split.VALIDATION: "dev",
            datasets.Split.TEST: "test",
        }

        for split in [
            datasets.Split.TRAIN,
            datasets.Split.VALIDATION,
            datasets.Split.TEST,
        ]:
            base_url = f"data/{self.config.main_data_folder}"

            data_csv = dl_manager.download(
                f"{base_url}/annotations/manual/{dataDirMapper[split]}{self.config.corpus_file_suffix}")

            df = pd.read_csv(data_csv, sep='|')

            example_ids = df['id']
            annotations = df['annotation']

            frame_archive_urls = dl_manager.download([
                f"{base_url}/features/fullFrame-210x260px/{dataDirMapper[split]}/{id}.tar"
                for id in example_ids
            ])

            frames[split] = [
                dl_manager.iter_archive(url)
                for url in frame_archive_urls
            ]

            other_data_split = {}

            for frame, idx, annotation, in zip(frames[split], example_ids, annotations):
                other_data_split[frame] = {
                    "id": idx,
                    "annotation": annotation,
                }

            other_data[split] = other_data_split

        return [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "frame_archives": frames[split],
                    "other_data": other_data[split],
                },
            )
            for split in [
                datasets.Split.TRAIN,
                datasets.Split.VALIDATION,
                datasets.Split.TEST,
            ]
        ]

    def _generate_examples(self, frame_archives: List[ArchiveIterable], other_data: Dict[ArchiveIterable, dict]):
        """
        _generate_examples generates examples for the HuggingFace dataset.
        It takes a list of frame_archives and the corresponding dict of other data.
        Each frame_archive acts as a key for the further data.

        :param frame_archives: list of ArchiveIterables
        :param other_data: Dict from ArchiveIterables to other data
        """
        for key, frames in enumerate(frame_archives):
            ex = other_data[frames]

            result = {
                "id": ex['id'],
                "transcription": ex['annotation'],
            }

            if self.config.name != 'pre-training':
                result["frames"] = [
                    image_to_numpy(im) for p, im in frames
                ]

            yield key, result