prompt
stringlengths 43
25.9k
| completion
stringlengths 7
362
| api
stringlengths 18
90
|
---|---|---|
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-pinecone langchain-openai langchain')
from langchain_community.document_loaders import TextLoader
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = | TextLoader("../../modules/state_of_the_union.txt") | langchain_community.document_loaders.TextLoader |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain label-studio label-studio-sdk langchain-openai')
import os
os.environ["LABEL_STUDIO_URL"] = "<YOUR-LABEL-STUDIO-URL>" # e.g. http://localhost:8080
os.environ["LABEL_STUDIO_API_KEY"] = "<YOUR-LABEL-STUDIO-API-KEY>"
os.environ["OPENAI_API_KEY"] = "<YOUR-OPENAI-API-KEY>"
from langchain.callbacks import LabelStudioCallbackHandler
from langchain_openai import OpenAI
llm = OpenAI(
temperature=0, callbacks=[LabelStudioCallbackHandler(project_name="My Project")]
)
print(llm("Tell me a joke"))
from langchain.callbacks import LabelStudioCallbackHandler
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import ChatOpenAI
chat_llm = ChatOpenAI(
callbacks=[
LabelStudioCallbackHandler(
mode="chat",
project_name="New Project with Chat",
)
]
)
llm_results = chat_llm(
[
SystemMessage(content="Always use a lot of emojis"),
HumanMessage(content="Tell me a joke"),
]
)
ls = | LabelStudioCallbackHandler(
project_config="""
<View>
<Text name="prompt" value="$prompt"/>
<TextArea name="response" toName="prompt"/>
<TextArea name="user_feedback" toName="prompt"/>
<Rating name="rating" toName="prompt"/>
<Choices name="sentiment" toName="prompt">
<Choice value="Positive"/>
<Choice value="Negative"/>
</Choices>
</View>
"""
) | langchain.callbacks.LabelStudioCallbackHandler |
get_ipython().system(' pip install langchain unstructured[all-docs] pydantic lxml')
path = "/Users/rlm/Desktop/Papers/LLaVA/"
from typing import Any
from pydantic import BaseModel
from unstructured.partition.pdf import partition_pdf
raw_pdf_elements = partition_pdf(
filename=path + "LLaVA.pdf",
extract_images_in_pdf=True,
infer_table_structure=True,
chunking_strategy="by_title",
max_characters=4000,
new_after_n_chars=3800,
combine_text_under_n_chars=2000,
image_output_dir_path=path,
)
category_counts = {}
for element in raw_pdf_elements:
category = str(type(element))
if category in category_counts:
category_counts[category] += 1
else:
category_counts[category] = 1
unique_categories = set(category_counts.keys())
category_counts
class Element(BaseModel):
type: str
text: Any
categorized_elements = []
for element in raw_pdf_elements:
if "unstructured.documents.elements.Table" in str(type(element)):
categorized_elements.append(Element(type="table", text=str(element)))
elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
categorized_elements.append(Element(type="text", text=str(element)))
table_elements = [e for e in categorized_elements if e.type == "table"]
print(len(table_elements))
text_elements = [e for e in categorized_elements if e.type == "text"]
print(len(text_elements))
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
prompt_text = """You are an assistant tasked with summarizing tables and text. \
Give a concise summary of the table or text. Table or text chunk: {element} """
prompt = ChatPromptTemplate.from_template(prompt_text)
model = | ChatOpenAI(temperature=0, model="gpt-4") | langchain_openai.ChatOpenAI |
from langchain.chains import GraphCypherQAChain
from langchain_community.graphs import Neo4jGraph
from langchain_openai import ChatOpenAI
graph = Neo4jGraph(
url="bolt://localhost:7687", username="neo4j", password="pleaseletmein"
)
graph.query(
"""
MERGE (m:Movie {name:"Top Gun"})
WITH m
UNWIND ["Tom Cruise", "Val Kilmer", "Anthony Edwards", "Meg Ryan"] AS actor
MERGE (a:Actor {name:actor})
MERGE (a)-[:ACTED_IN]->(m)
"""
)
graph.refresh_schema()
print(graph.schema)
chain = GraphCypherQAChain.from_llm(
ChatOpenAI(temperature=0), graph=graph, verbose=True
)
chain.run("Who played in Top Gun?")
chain = GraphCypherQAChain.from_llm(
ChatOpenAI(temperature=0), graph=graph, verbose=True, top_k=2
)
chain.run("Who played in Top Gun?")
chain = GraphCypherQAChain.from_llm(
ChatOpenAI(temperature=0), graph=graph, verbose=True, return_intermediate_steps=True
)
result = chain("Who played in Top Gun?")
print(f"Intermediate steps: {result['intermediate_steps']}")
print(f"Final answer: {result['result']}")
chain = GraphCypherQAChain.from_llm(
ChatOpenAI(temperature=0), graph=graph, verbose=True, return_direct=True
)
chain.run("Who played in Top Gun?")
from langchain.prompts.prompt import PromptTemplate
CYPHER_GENERATION_TEMPLATE = """Task:Generate Cypher statement to query a graph database.
Instructions:
Use only the provided relationship types and properties in the schema.
Do not use any other relationship types or properties that are not provided.
Schema:
{schema}
Note: Do not include any explanations or apologies in your responses.
Do not respond to any questions that might ask anything else than for you to construct a Cypher statement.
Do not include any text except the generated Cypher statement.
Examples: Here are a few examples of generated Cypher statements for particular questions:
MATCH (m:Movie {{title:"Top Gun"}})<-[:ACTED_IN]-()
RETURN count(*) AS numberOfActors
The question is:
{question}"""
CYPHER_GENERATION_PROMPT = PromptTemplate(
input_variables=["schema", "question"], template=CYPHER_GENERATION_TEMPLATE
)
chain = GraphCypherQAChain.from_llm(
ChatOpenAI(temperature=0),
graph=graph,
verbose=True,
cypher_prompt=CYPHER_GENERATION_PROMPT,
)
chain.run("How many people played in Top Gun?")
chain = GraphCypherQAChain.from_llm(
graph=graph,
cypher_llm= | ChatOpenAI(temperature=0, model="gpt-3.5-turbo") | langchain_openai.ChatOpenAI |
from langchain_community.document_loaders import HNLoader
loader = | HNLoader("https://news.ycombinator.com/item?id=34817881") | langchain_community.document_loaders.HNLoader |
from langchain.chains import FalkorDBQAChain
from langchain_community.graphs import FalkorDBGraph
from langchain_openai import ChatOpenAI
graph = FalkorDBGraph(database="movies")
graph.query(
"""
CREATE
(al:Person {name: 'Al Pacino', birthDate: '1940-04-25'}),
(robert:Person {name: 'Robert De Niro', birthDate: '1943-08-17'}),
(tom:Person {name: 'Tom Cruise', birthDate: '1962-07-3'}),
(val:Person {name: 'Val Kilmer', birthDate: '1959-12-31'}),
(anthony:Person {name: 'Anthony Edwards', birthDate: '1962-7-19'}),
(meg:Person {name: 'Meg Ryan', birthDate: '1961-11-19'}),
(god1:Movie {title: 'The Godfather'}),
(god2:Movie {title: 'The Godfather: Part II'}),
(god3:Movie {title: 'The Godfather Coda: The Death of Michael Corleone'}),
(top:Movie {title: 'Top Gun'}),
(al)-[:ACTED_IN]->(god1),
(al)-[:ACTED_IN]->(god2),
(al)-[:ACTED_IN]->(god3),
(robert)-[:ACTED_IN]->(god2),
(tom)-[:ACTED_IN]->(top),
(val)-[:ACTED_IN]->(top),
(anthony)-[:ACTED_IN]->(top),
(meg)-[:ACTED_IN]->(top)
"""
)
graph.refresh_schema()
print(graph.schema)
import os
os.environ["OPENAI_API_KEY"] = "API_KEY_HERE"
chain = FalkorDBQAChain.from_llm( | ChatOpenAI(temperature=0) | langchain_openai.ChatOpenAI |
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory
from langchain.prompts import PromptTemplate
from langchain_community.utilities import GoogleSearchAPIWrapper
from langchain_openai import OpenAI
template = """This is a conversation between a human and a bot:
{chat_history}
Write a summary of the conversation for {input}:
"""
prompt = PromptTemplate(input_variables=["input", "chat_history"], template=template)
memory = ConversationBufferMemory(memory_key="chat_history")
readonlymemory = ReadOnlySharedMemory(memory=memory)
summary_chain = LLMChain(
llm=OpenAI(),
prompt=prompt,
verbose=True,
memory=readonlymemory, # use the read-only memory to prevent the tool from modifying the memory
)
search = GoogleSearchAPIWrapper()
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events",
),
Tool(
name="Summary",
func=summary_chain.run,
description="useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.",
),
]
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
suffix = """Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"],
)
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True, memory=memory
)
agent_chain.run(input="What is ChatGPT?")
agent_chain.run(input="Who developed it?")
agent_chain.run(
input="Thanks. Summarize the conversation, for my daughter 5 years old."
)
print(agent_chain.memory.buffer)
template = """This is a conversation between a human and a bot:
{chat_history}
Write a summary of the conversation for {input}:
"""
prompt = PromptTemplate(input_variables=["input", "chat_history"], template=template)
memory = ConversationBufferMemory(memory_key="chat_history")
summary_chain = LLMChain(
llm=OpenAI(),
prompt=prompt,
verbose=True,
memory=memory, # <--- this is the only change
)
search = GoogleSearchAPIWrapper()
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events",
),
Tool(
name="Summary",
func=summary_chain.run,
description="useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.",
),
]
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
suffix = """Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"],
)
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
agent = | ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) | langchain.agents.ZeroShotAgent |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet amadeus > /dev/null')
import os
os.environ["AMADEUS_CLIENT_ID"] = "CLIENT_ID"
os.environ["AMADEUS_CLIENT_SECRET"] = "CLIENT_SECRET"
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"
from langchain_community.agent_toolkits.amadeus.toolkit import AmadeusToolkit
toolkit = AmadeusToolkit()
tools = toolkit.get_tools()
from langchain_community.llms import HuggingFaceHub
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "YOUR_HF_API_TOKEN"
llm = HuggingFaceHub(
repo_id="tiiuae/falcon-7b-instruct",
model_kwargs={"temperature": 0.5, "max_length": 64},
)
toolkit_hf = AmadeusToolkit(llm=llm)
from langchain import hub
from langchain.agents import AgentExecutor, create_react_agent
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
from langchain.tools.render import render_text_description_and_args
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0)
prompt = | hub.pull("hwchase17/react-json") | langchain.hub.pull |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet gigachat')
import os
from getpass import getpass
os.environ["GIGACHAT_CREDENTIALS"] = getpass()
from langchain_community.chat_models import GigaChat
chat = | GigaChat(verify_ssl_certs=False) | langchain_community.chat_models.GigaChat |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-google-spanner')
from google.colab import auth
auth.authenticate_user()
PROJECT_ID = "my-project-id" # @param {type:"string"}
get_ipython().system('gcloud config set project {PROJECT_ID}')
get_ipython().system('gcloud services enable spanner.googleapis.com')
INSTANCE = "my-instance" # @param {type: "string"}
DATABASE = "my-database" # @param {type: "string"}
TABLE_NAME = "vectors_search_data" # @param {type: "string"}
from langchain_google_spanner import SecondaryIndex, SpannerVectorStore, TableColumn
SpannerVectorStore.init_vector_store_table(
instance_id=INSTANCE,
database_id=DATABASE,
table_name=TABLE_NAME,
id_column="row_id",
metadata_columns=[
| TableColumn(name="metadata", type="JSON", is_null=True) | langchain_google_spanner.TableColumn |
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain_community.chat_message_histories import RedisChatMessageHistory
from langchain_community.utilities import GoogleSearchAPIWrapper
from langchain_openai import OpenAI
search = GoogleSearchAPIWrapper()
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events",
)
]
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
suffix = """Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"],
)
message_history = RedisChatMessageHistory(
url="redis://localhost:6379/0", ttl=600, session_id="my-session"
)
memory = ConversationBufferMemory(
memory_key="chat_history", chat_memory=message_history
)
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
agent = | ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) | langchain.agents.ZeroShotAgent |
SOURCE = "test" # @param {type:"Query"|"CollectionGroup"|"DocumentReference"|"string"}
get_ipython().run_line_magic('pip', 'install -upgrade --quiet langchain-google-firestore')
PROJECT_ID = "my-project-id" # @param {type:"string"}
get_ipython().system('gcloud config set project {PROJECT_ID}')
from google.colab import auth
auth.authenticate_user()
get_ipython().system('gcloud services enable firestore.googleapis.com')
from langchain_core.documents.base import Document
from langchain_google_firestore import FirestoreSaver
saver = FirestoreSaver()
data = [Document(page_content="Hello, World!")]
saver.upsert_documents(data)
saver = FirestoreSaver("Collection")
saver.upsert_documents(data)
doc_ids = ["AnotherCollection/doc_id", "foo/bar"]
saver = FirestoreSaver()
saver.upsert_documents(documents=data, document_ids=doc_ids)
from langchain_google_firestore import FirestoreLoader
loader_collection = FirestoreLoader("Collection")
loader_subcollection = FirestoreLoader("Collection/doc/SubCollection")
data_collection = loader_collection.load()
data_subcollection = loader_subcollection.load()
from google.cloud import firestore
client = firestore.Client()
doc_ref = client.collection("foo").document("bar")
loader_document = FirestoreLoader(doc_ref)
data = loader_document.load()
from google.cloud.firestore import CollectionGroup, FieldFilter, Query
col_ref = client.collection("col_group")
collection_group = CollectionGroup(col_ref)
loader_group = FirestoreLoader(collection_group)
col_ref = client.collection("collection")
query = col_ref.where(filter=FieldFilter("region", "==", "west_coast"))
loader_query = FirestoreLoader(query)
saver = | FirestoreSaver() | langchain_google_firestore.FirestoreSaver |
get_ipython().system(' pip install langchain unstructured[all-docs] pydantic lxml langchainhub')
get_ipython().system(' brew install tesseract')
get_ipython().system(' brew install poppler')
path = "/Users/rlm/Desktop/Papers/LLaMA2/"
from typing import Any
from pydantic import BaseModel
from unstructured.partition.pdf import partition_pdf
raw_pdf_elements = partition_pdf(
filename=path + "LLaMA2.pdf",
extract_images_in_pdf=False,
infer_table_structure=True,
chunking_strategy="by_title",
max_characters=4000,
new_after_n_chars=3800,
combine_text_under_n_chars=2000,
image_output_dir_path=path,
)
category_counts = {}
for element in raw_pdf_elements:
category = str(type(element))
if category in category_counts:
category_counts[category] += 1
else:
category_counts[category] = 1
unique_categories = set(category_counts.keys())
category_counts
class Element(BaseModel):
type: str
text: Any
categorized_elements = []
for element in raw_pdf_elements:
if "unstructured.documents.elements.Table" in str(type(element)):
categorized_elements.append(Element(type="table", text=str(element)))
elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
categorized_elements.append(Element(type="text", text=str(element)))
table_elements = [e for e in categorized_elements if e.type == "table"]
print(len(table_elements))
text_elements = [e for e in categorized_elements if e.type == "text"]
print(len(text_elements))
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
prompt_text = """You are an assistant tasked with summarizing tables and text. \
Give a concise summary of the table or text. Table or text chunk: {element} """
prompt = ChatPromptTemplate.from_template(prompt_text)
model = ChatOpenAI(temperature=0, model="gpt-4")
summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()
tables = [i.text for i in table_elements]
table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5})
texts = [i.text for i in text_elements]
text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5})
import uuid
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
vectorstore = Chroma(collection_name="summaries", embedding_function= | OpenAIEmbeddings() | langchain_openai.OpenAIEmbeddings |
from langchain.output_parsers import DatetimeOutputParser
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAI
output_parser = DatetimeOutputParser()
template = """Answer the users question:
{question}
{format_instructions}"""
prompt = PromptTemplate.from_template(
template,
partial_variables={"format_instructions": output_parser.get_format_instructions()},
)
prompt
chain = prompt | | OpenAI() | langchain_openai.OpenAI |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet rank_bm25')
from langchain.retrievers import BM25Retriever
retriever = BM25Retriever.from_texts(["foo", "bar", "world", "hello", "foo bar"])
from langchain_core.documents import Document
retriever = BM25Retriever.from_documents(
[
Document(page_content="foo"),
Document(page_content="bar"),
| Document(page_content="world") | langchain_core.documents.Document |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pyspark')
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = spark.read.csv("example_data/mlb_teams_2012.csv", header=True)
from langchain_community.document_loaders import PySparkDataFrameLoader
loader = | PySparkDataFrameLoader(spark, df, page_content_column="Team") | langchain_community.document_loaders.PySparkDataFrameLoader |
from typing import List
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field, validator
from langchain_openai import ChatOpenAI
model = ChatOpenAI(temperature=0)
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
@validator("setup")
def question_ends_with_question_mark(cls, field):
if field[-1] != "?":
raise ValueError("Badly formed question!")
return field
joke_query = "Tell me a joke."
parser = PydanticOutputParser(pydantic_object=Joke)
prompt = PromptTemplate(
template="Answer the user query.\n{format_instructions}\n{query}\n",
input_variables=["query"],
partial_variables={"format_instructions": parser.get_format_instructions()},
)
chain = prompt | model | parser
chain.invoke({"query": joke_query})
class Actor(BaseModel):
name: str = Field(description="name of an actor")
film_names: List[str] = Field(description="list of names of films they starred in")
actor_query = "Generate the filmography for a random actor."
parser = | PydanticOutputParser(pydantic_object=Actor) | langchain.output_parsers.PydanticOutputParser |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet cohere')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet faiss')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet faiss-cpu')
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass("Cohere API Key:")
def pretty_print_docs(docs):
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]
)
)
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings import CohereEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
documents = TextLoader("../../modules/state_of_the_union.txt").load()
text_splitter = | RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) | langchain_text_splitters.RecursiveCharacterTextSplitter |
get_ipython().system(' pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)')
get_ipython().system(' pip install "unstructured[all-docs]" pillow pydantic lxml pillow matplotlib chromadb tiktoken')
from langchain_text_splitters import CharacterTextSplitter
from unstructured.partition.pdf import partition_pdf
def extract_pdf_elements(path, fname):
"""
Extract images, tables, and chunk text from a PDF file.
path: File path, which is used to dump images (.jpg)
fname: File name
"""
return partition_pdf(
filename=path + fname,
extract_images_in_pdf=False,
infer_table_structure=True,
chunking_strategy="by_title",
max_characters=4000,
new_after_n_chars=3800,
combine_text_under_n_chars=2000,
image_output_dir_path=path,
)
def categorize_elements(raw_pdf_elements):
"""
Categorize extracted elements from a PDF into tables and texts.
raw_pdf_elements: List of unstructured.documents.elements
"""
tables = []
texts = []
for element in raw_pdf_elements:
if "unstructured.documents.elements.Table" in str(type(element)):
tables.append(str(element))
elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
texts.append(str(element))
return texts, tables
fpath = "/Users/rlm/Desktop/cj/"
fname = "cj.pdf"
raw_pdf_elements = extract_pdf_elements(fpath, fname)
texts, tables = categorize_elements(raw_pdf_elements)
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
chunk_size=4000, chunk_overlap=0
)
joined_texts = " ".join(texts)
texts_4k_token = text_splitter.split_text(joined_texts)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
def generate_text_summaries(texts, tables, summarize_texts=False):
"""
Summarize text elements
texts: List of str
tables: List of str
summarize_texts: Bool to summarize texts
"""
prompt_text = """You are an assistant tasked with summarizing tables and text for retrieval. \
These summaries will be embedded and used to retrieve the raw text or table elements. \
Give a concise summary of the table or text that is well optimized for retrieval. Table or text: {element} """
prompt = ChatPromptTemplate.from_template(prompt_text)
model = ChatOpenAI(temperature=0, model="gpt-4")
summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()
text_summaries = []
table_summaries = []
if texts and summarize_texts:
text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5})
elif texts:
text_summaries = texts
if tables:
table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5})
return text_summaries, table_summaries
text_summaries, table_summaries = generate_text_summaries(
texts_4k_token, tables, summarize_texts=True
)
import base64
import os
from langchain_core.messages import HumanMessage
def encode_image(image_path):
"""Getting the base64 string"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def image_summarize(img_base64, prompt):
"""Make image summary"""
chat = ChatOpenAI(model="gpt-4-vision-preview", max_tokens=1024)
msg = chat.invoke(
[
HumanMessage(
content=[
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
},
]
)
]
)
return msg.content
def generate_img_summaries(path):
"""
Generate summaries and base64 encoded strings for images
path: Path to list of .jpg files extracted by Unstructured
"""
img_base64_list = []
image_summaries = []
prompt = """You are an assistant tasked with summarizing images for retrieval. \
These summaries will be embedded and used to retrieve the raw image. \
Give a concise summary of the image that is well optimized for retrieval."""
for img_file in sorted(os.listdir(path)):
if img_file.endswith(".jpg"):
img_path = os.path.join(path, img_file)
base64_image = encode_image(img_path)
img_base64_list.append(base64_image)
image_summaries.append(image_summarize(base64_image, prompt))
return img_base64_list, image_summaries
img_base64_list, image_summaries = generate_img_summaries(fpath)
import uuid
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
def create_multi_vector_retriever(
vectorstore, text_summaries, texts, table_summaries, tables, image_summaries, images
):
"""
Create retriever that indexes summaries, but returns raw images or texts
"""
store = InMemoryStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
docstore=store,
id_key=id_key,
)
def add_documents(retriever, doc_summaries, doc_contents):
doc_ids = [str(uuid.uuid4()) for _ in doc_contents]
summary_docs = [
Document(page_content=s, metadata={id_key: doc_ids[i]})
for i, s in enumerate(doc_summaries)
]
retriever.vectorstore.add_documents(summary_docs)
retriever.docstore.mset(list(zip(doc_ids, doc_contents)))
if text_summaries:
add_documents(retriever, text_summaries, texts)
if table_summaries:
add_documents(retriever, table_summaries, tables)
if image_summaries:
add_documents(retriever, image_summaries, images)
return retriever
vectorstore = Chroma(
collection_name="mm_rag_cj_blog", embedding_function=OpenAIEmbeddings()
)
retriever_multi_vector_img = create_multi_vector_retriever(
vectorstore,
text_summaries,
texts,
table_summaries,
tables,
image_summaries,
img_base64_list,
)
import io
import re
from IPython.display import HTML, display
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from PIL import Image
def plt_img_base64(img_base64):
"""Disply base64 encoded string as image"""
image_html = f'<img src="data:image/jpeg;base64,{img_base64}" />'
display(HTML(image_html))
def looks_like_base64(sb):
"""Check if the string looks like base64"""
return re.match("^[A-Za-z0-9+/]+[=]{0,2}$", sb) is not None
def is_image_data(b64data):
"""
Check if the base64 data is an image by looking at the start of the data
"""
image_signatures = {
b"\xFF\xD8\xFF": "jpg",
b"\x89\x50\x4E\x47\x0D\x0A\x1A\x0A": "png",
b"\x47\x49\x46\x38": "gif",
b"\x52\x49\x46\x46": "webp",
}
try:
header = base64.b64decode(b64data)[:8] # Decode and get the first 8 bytes
for sig, format in image_signatures.items():
if header.startswith(sig):
return True
return False
except Exception:
return False
def resize_base64_image(base64_string, size=(128, 128)):
"""
Resize an image encoded as a Base64 string
"""
img_data = base64.b64decode(base64_string)
img = Image.open(io.BytesIO(img_data))
resized_img = img.resize(size, Image.LANCZOS)
buffered = io.BytesIO()
resized_img.save(buffered, format=img.format)
return base64.b64encode(buffered.getvalue()).decode("utf-8")
def split_image_text_types(docs):
"""
Split base64-encoded images and texts
"""
b64_images = []
texts = []
for doc in docs:
if isinstance(doc, Document):
doc = doc.page_content
if looks_like_base64(doc) and is_image_data(doc):
doc = resize_base64_image(doc, size=(1300, 600))
b64_images.append(doc)
else:
texts.append(doc)
return {"images": b64_images, "texts": texts}
def img_prompt_func(data_dict):
"""
Join the context into a single string
"""
formatted_texts = "\n".join(data_dict["context"]["texts"])
messages = []
if data_dict["context"]["images"]:
for image in data_dict["context"]["images"]:
image_message = {
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image}"},
}
messages.append(image_message)
text_message = {
"type": "text",
"text": (
"You are financial analyst tasking with providing investment advice.\n"
"You will be given a mixed of text, tables, and image(s) usually of charts or graphs.\n"
"Use this information to provide investment advice related to the user question. \n"
f"User-provided question: {data_dict['question']}\n\n"
"Text and / or tables:\n"
f"{formatted_texts}"
),
}
messages.append(text_message)
return [HumanMessage(content=messages)]
def multi_modal_rag_chain(retriever):
"""
Multi-modal RAG chain
"""
model = ChatOpenAI(temperature=0, model="gpt-4-vision-preview", max_tokens=1024)
chain = (
{
"context": retriever | RunnableLambda(split_image_text_types),
"question": RunnablePassthrough(),
}
| RunnableLambda(img_prompt_func)
| model
| | StrOutputParser() | langchain_core.output_parsers.StrOutputParser |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pymilvus')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Milvus
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_db = Milvus.from_documents(
docs,
embeddings,
connection_args={"host": "127.0.0.1", "port": "19530"},
)
query = "What did the president say about Ketanji Brown Jackson"
docs = vector_db.similarity_search(query)
docs[0].page_content
vector_db = Milvus.from_documents(
docs,
embeddings,
collection_name="collection_1",
connection_args={"host": "127.0.0.1", "port": "19530"},
)
vector_db = Milvus(
embeddings,
connection_args={"host": "127.0.0.1", "port": "19530"},
collection_name="collection_1",
)
from langchain_core.documents import Document
docs = [
| Document(page_content="i worked at kensho", metadata={"namespace": "harrison"}) | langchain.docstore.document.Document |
import os
os.environ["SCENEX_API_KEY"] = "<YOUR_API_KEY>"
from langchain.agents import load_tools
tools = load_tools(["sceneXplain"])
from langchain.tools import SceneXplainTool
tool = SceneXplainTool()
from langchain.agents import initialize_agent
from langchain.memory import ConversationBufferMemory
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
memory = | ConversationBufferMemory(memory_key="chat_history") | langchain.memory.ConversationBufferMemory |
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory
from langchain.prompts import PromptTemplate
from langchain_community.utilities import GoogleSearchAPIWrapper
from langchain_openai import OpenAI
template = """This is a conversation between a human and a bot:
{chat_history}
Write a summary of the conversation for {input}:
"""
prompt = PromptTemplate(input_variables=["input", "chat_history"], template=template)
memory = ConversationBufferMemory(memory_key="chat_history")
readonlymemory = ReadOnlySharedMemory(memory=memory)
summary_chain = LLMChain(
llm=OpenAI(),
prompt=prompt,
verbose=True,
memory=readonlymemory, # use the read-only memory to prevent the tool from modifying the memory
)
search = GoogleSearchAPIWrapper()
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events",
),
Tool(
name="Summary",
func=summary_chain.run,
description="useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary.",
),
]
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
suffix = """Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"],
)
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True, memory=memory
)
agent_chain.run(input="What is ChatGPT?")
agent_chain.run(input="Who developed it?")
agent_chain.run(
input="Thanks. Summarize the conversation, for my daughter 5 years old."
)
print(agent_chain.memory.buffer)
template = """This is a conversation between a human and a bot:
{chat_history}
Write a summary of the conversation for {input}:
"""
prompt = PromptTemplate(input_variables=["input", "chat_history"], template=template)
memory = ConversationBufferMemory(memory_key="chat_history")
summary_chain = LLMChain(
llm=OpenAI(),
prompt=prompt,
verbose=True,
memory=memory, # <--- this is the only change
)
search = | GoogleSearchAPIWrapper() | langchain_community.utilities.GoogleSearchAPIWrapper |
get_ipython().run_line_magic('pip', 'install -qU langchain langchain-openai langchain-anthropic langchain-community wikipedia')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_community.retrievers import WikipediaRetriever
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
wiki = WikipediaRetriever(top_k_results=6, doc_content_chars_max=2000)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You're a helpful AI assistant. Given a user question and some Wikipedia article snippets, answer the user question. If none of the articles answer the question, just say you don't know.\n\nHere are the Wikipedia articles:{context}",
),
("human", "{question}"),
]
)
prompt.pretty_print()
from operator import itemgetter
from typing import List
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import (
RunnableLambda,
RunnableParallel,
RunnablePassthrough,
)
def format_docs(docs: List[Document]) -> str:
"""Convert Documents to a single string.:"""
formatted = [
f"Article Title: {doc.metadata['title']}\nArticle Snippet: {doc.page_content}"
for doc in docs
]
return "\n\n" + "\n\n".join(formatted)
format = itemgetter("docs") | RunnableLambda(format_docs)
answer = prompt | llm | StrOutputParser()
chain = (
RunnableParallel(question=RunnablePassthrough(), docs=wiki)
.assign(context=format)
.assign(answer=answer)
.pick(["answer", "docs"])
)
chain.invoke("How fast are cheetahs?")
from langchain_core.pydantic_v1 import BaseModel, Field
class cited_answer(BaseModel):
"""Answer the user question based only on the given sources, and cite the sources used."""
answer: str = Field(
...,
description="The answer to the user question, which is based only on the given sources.",
)
citations: List[int] = Field(
...,
description="The integer IDs of the SPECIFIC sources which justify the answer.",
)
llm_with_tool = llm.bind_tools(
[cited_answer],
tool_choice="cited_answer",
)
example_q = """What Brian's height?
Source: 1
Information: Suzy is 6'2"
Source: 2
Information: Jeremiah is blonde
Source: 3
Information: Brian is 3 inches shorted than Suzy"""
llm_with_tool.invoke(example_q)
from langchain.output_parsers.openai_tools import JsonOutputKeyToolsParser
output_parser = JsonOutputKeyToolsParser(key_name="cited_answer", return_single=True)
(llm_with_tool | output_parser).invoke(example_q)
def format_docs_with_id(docs: List[Document]) -> str:
formatted = [
f"Source ID: {i}\nArticle Title: {doc.metadata['title']}\nArticle Snippet: {doc.page_content}"
for i, doc in enumerate(docs)
]
return "\n\n" + "\n\n".join(formatted)
format_1 = itemgetter("docs") | RunnableLambda(format_docs_with_id)
answer_1 = prompt | llm_with_tool | output_parser
chain_1 = (
RunnableParallel(question=RunnablePassthrough(), docs=wiki)
.assign(context=format_1)
.assign(cited_answer=answer_1)
.pick(["cited_answer", "docs"])
)
chain_1.invoke("How fast are cheetahs?")
class Citation(BaseModel):
source_id: int = Field(
...,
description="The integer ID of a SPECIFIC source which justifies the answer.",
)
quote: str = Field(
...,
description="The VERBATIM quote from the specified source that justifies the answer.",
)
class quoted_answer(BaseModel):
"""Answer the user question based only on the given sources, and cite the sources used."""
answer: str = Field(
...,
description="The answer to the user question, which is based only on the given sources.",
)
citations: List[Citation] = Field(
..., description="Citations from the given sources that justify the answer."
)
output_parser_2 = JsonOutputKeyToolsParser(key_name="quoted_answer", return_single=True)
llm_with_tool_2 = llm.bind_tools(
[quoted_answer],
tool_choice="quoted_answer",
)
format_2 = itemgetter("docs") | RunnableLambda(format_docs_with_id)
answer_2 = prompt | llm_with_tool_2 | output_parser_2
chain_2 = (
RunnableParallel(question=RunnablePassthrough(), docs=wiki)
.assign(context=format_2)
.assign(quoted_answer=answer_2)
.pick(["quoted_answer", "docs"])
)
chain_2.invoke("How fast are cheetahs?")
from langchain_anthropic import ChatAnthropicMessages
anthropic = ChatAnthropicMessages(model_name="claude-instant-1.2")
system = """You're a helpful AI assistant. Given a user question and some Wikipedia article snippets, \
answer the user question and provide citations. If none of the articles answer the question, just say you don't know.
Remember, you must return both an answer and citations. A citation consists of a VERBATIM quote that \
justifies the answer and the ID of the quote article. Return a citation for every quote across all articles \
that justify the answer. Use the following format for your final output:
<cited_answer>
<answer></answer>
<citations>
<citation><source_id></source_id><quote></quote></citation>
<citation><source_id></source_id><quote></quote></citation>
...
</citations>
</cited_answer>
Here are the Wikipedia articles:{context}"""
prompt_3 = ChatPromptTemplate.from_messages(
[("system", system), ("human", "{question}")]
)
from langchain_core.output_parsers import XMLOutputParser
def format_docs_xml(docs: List[Document]) -> str:
formatted = []
for i, doc in enumerate(docs):
doc_str = f"""\
<source id=\"{i}\">
<title>{doc.metadata['title']}</title>
<article_snippet>{doc.page_content}</article_snippet>
</source>"""
formatted.append(doc_str)
return "\n\n<sources>" + "\n".join(formatted) + "</sources>"
format_3 = itemgetter("docs") | RunnableLambda(format_docs_xml)
answer_3 = prompt_3 | anthropic | | XMLOutputParser() | langchain_core.output_parsers.XMLOutputParser |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet praw')
client_id = ""
client_secret = ""
user_agent = ""
from langchain_community.tools.reddit_search.tool import RedditSearchRun
from langchain_community.utilities.reddit_search import RedditSearchAPIWrapper
search = RedditSearchRun(
api_wrapper=RedditSearchAPIWrapper(
reddit_client_id=client_id,
reddit_client_secret=client_secret,
reddit_user_agent=user_agent,
)
)
from langchain_community.tools.reddit_search.tool import RedditSearchSchema
search_params = RedditSearchSchema(
query="beginner", sort="new", time_filter="week", subreddit="python", limit="2"
)
result = search.run(tool_input=search_params.dict())
print(result)
from langchain.agents import AgentExecutor, StructuredChatAgent, Tool
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory
from langchain.prompts import PromptTemplate
from langchain_community.tools.reddit_search.tool import RedditSearchRun
from langchain_community.utilities.reddit_search import RedditSearchAPIWrapper
from langchain_openai import ChatOpenAI
client_id = ""
client_secret = ""
user_agent = ""
openai_api_key = ""
template = """This is a conversation between a human and a bot:
{chat_history}
Write a summary of the conversation for {input}:
"""
prompt = PromptTemplate(input_variables=["input", "chat_history"], template=template)
memory = ConversationBufferMemory(memory_key="chat_history")
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
suffix = """Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
tools = [
RedditSearchRun(
api_wrapper=RedditSearchAPIWrapper(
reddit_client_id=client_id,
reddit_client_secret=client_secret,
reddit_user_agent=user_agent,
)
)
]
prompt = StructuredChatAgent.create_prompt(
prefix=prefix,
tools=tools,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"],
)
llm = ChatOpenAI(temperature=0, openai_api_key=openai_api_key)
llm_chain = LLMChain(llm=llm, prompt=prompt)
agent = | StructuredChatAgent(llm_chain=llm_chain, verbose=True, tools=tools) | langchain.agents.StructuredChatAgent |
meals = [
"Beef Enchiladas with Feta cheese. Mexican-Greek fusion",
"Chicken Flatbreads with red sauce. Italian-Mexican fusion",
"Veggie sweet potato quesadillas with vegan cheese",
"One-Pan Tortelonni bake with peppers and onions",
]
from langchain_openai import OpenAI
llm = OpenAI(model="gpt-3.5-turbo-instruct")
from langchain.prompts import PromptTemplate
PROMPT_TEMPLATE = """Here is the description of a meal: "{meal}".
Embed the meal into the given text: "{text_to_personalize}".
Prepend a personalized message including the user's name "{user}"
and their preference "{preference}".
Make it sound good.
"""
PROMPT = PromptTemplate(
input_variables=["meal", "text_to_personalize", "user", "preference"],
template=PROMPT_TEMPLATE,
)
import langchain_experimental.rl_chain as rl_chain
chain = rl_chain.PickBest.from_llm(llm=llm, prompt=PROMPT)
response = chain.run(
meal= | rl_chain.ToSelectFrom(meals) | langchain_experimental.rl_chain.ToSelectFrom |
from langchain.prompts import (
ChatPromptTemplate,
FewShotChatMessagePromptTemplate,
)
examples = [
{"input": "2+2", "output": "4"},
{"input": "2+3", "output": "5"},
]
example_prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
("ai", "{output}"),
]
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
example_prompt=example_prompt,
examples=examples,
)
print(few_shot_prompt.format())
final_prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a wondrous wizard of math."),
few_shot_prompt,
("human", "{input}"),
]
)
from langchain_community.chat_models import ChatAnthropic
chain = final_prompt | ChatAnthropic(temperature=0.0)
chain.invoke({"input": "What's the square of a triangle?"})
from langchain.prompts import SemanticSimilarityExampleSelector
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings
examples = [
{"input": "2+2", "output": "4"},
{"input": "2+3", "output": "5"},
{"input": "2+4", "output": "6"},
{"input": "What did the cow say to the moon?", "output": "nothing at all"},
{
"input": "Write me a poem about the moon",
"output": "One for the moon, and one for me, who are we to talk about the moon?",
},
]
to_vectorize = [" ".join(example.values()) for example in examples]
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_texts(to_vectorize, embeddings, metadatas=examples)
example_selector = SemanticSimilarityExampleSelector(
vectorstore=vectorstore,
k=2,
)
example_selector.select_examples({"input": "horse"})
from langchain.prompts import (
ChatPromptTemplate,
FewShotChatMessagePromptTemplate,
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
input_variables=["input"],
example_selector=example_selector,
example_prompt= | ChatPromptTemplate.from_messages(
[("human", "{input}") | langchain.prompts.ChatPromptTemplate.from_messages |
from langchain.output_parsers import (
OutputFixingParser,
PydanticOutputParser,
)
from langchain.prompts import (
PromptTemplate,
)
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI, OpenAI
template = """Based on the user question, provide an Action and Action Input for what step should be taken.
{format_instructions}
Question: {query}
Response:"""
class Action(BaseModel):
action: str = | Field(description="action to take") | langchain_core.pydantic_v1.Field |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain tiktoken langchain-openai')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet hippo-api==1.1.0.rc3')
import os
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.hippo import Hippo
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
os.environ["OPENAI_API_KEY"] = "YOUR OPENAI KEY"
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = | CharacterTextSplitter(chunk_size=500, chunk_overlap=0) | langchain_text_splitters.CharacterTextSplitter |
get_ipython().system(' pip install langchain docugami==0.0.8 dgml-utils==0.3.0 pydantic langchainhub chromadb hnswlib --upgrade --quiet')
from pprint import pprint
from docugami import Docugami
from docugami.lib.upload import upload_to_named_docset, wait_for_dgml
DOCSET_NAME = "NTSB Aviation Incident Reports"
FILE_PATHS = [
"/Users/tjaffri/ntsb/Report_CEN23LA277_192541.pdf",
"/Users/tjaffri/ntsb/Report_CEN23LA338_192753.pdf",
"/Users/tjaffri/ntsb/Report_CEN23LA363_192876.pdf",
"/Users/tjaffri/ntsb/Report_CEN23LA394_192995.pdf",
"/Users/tjaffri/ntsb/Report_ERA23LA114_106615.pdf",
"/Users/tjaffri/ntsb/Report_WPR23LA254_192532.pdf",
]
assert len(FILE_PATHS) > 5, "Please provide at least 6 files"
dg_client = Docugami()
dg_docs = upload_to_named_docset(dg_client, FILE_PATHS, DOCSET_NAME)
dgml_paths = wait_for_dgml(dg_client, dg_docs)
pprint(dgml_paths)
from pathlib import Path
from dgml_utils.segmentation import get_chunks_str
dgml_path = dgml_paths[Path(FILE_PATHS[0]).name]
with open(dgml_path, "r") as file:
contents = file.read().encode("utf-8")
chunks = get_chunks_str(
contents,
include_xml_tags=True, # Ensures Docugami XML semantic tags are included in the chunked output (set to False for text-only chunks and tables as Markdown)
max_text_length=1024 * 8, # 8k chars are ~2k tokens for OpenAI.
)
print(f"found {len(chunks)} chunks, here are the first few")
for chunk in chunks[:10]:
print(chunk.text)
with open(dgml_path, "r") as file:
contents = file.read().encode("utf-8")
chunks = get_chunks_str(
contents,
include_xml_tags=False, # text-only chunks and tables as Markdown
max_text_length=1024
* 8, # 8k chars are ~2k tokens for OpenAI. Ref: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
)
print(f"found {len(chunks)} chunks, here are the first few")
for chunk in chunks[:10]:
print(chunk.text)
import requests
dgml = requests.get(
"https://raw.githubusercontent.com/docugami/dgml-utils/main/python/tests/test_data/article/Jane%20Doe.xml"
).text
chunks = get_chunks_str(dgml, include_xml_tags=True)
len(chunks)
category_counts = {}
for element in chunks:
category = element.structure
if category in category_counts:
category_counts[category] += 1
else:
category_counts[category] = 1
category_counts
table_elements = [c for c in chunks if "table" in c.structure.split()]
print(f"There are {len(table_elements)} tables")
text_elements = [c for c in chunks if "table" not in c.structure.split()]
print(f"There are {len(text_elements)} text elements")
for element in text_elements[:20]:
print(element.text)
print(table_elements[0].text)
chunks_as_text = get_chunks_str(dgml, include_xml_tags=False)
table_elements_as_text = [c for c in chunks_as_text if "table" in c.structure.split()]
print(table_elements_as_text[0].text)
from langchain.prompts import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import ChatOpenAI
prompt_text = """You are an assistant tasked with summarizing tables and text. \
Give a concise summary of the table or text. Table or text chunk: {element} """
prompt = ChatPromptTemplate.from_template(prompt_text)
model = | ChatOpenAI(temperature=0, model="gpt-4") | langchain_openai.ChatOpenAI |
from langchain.agents import AgentExecutor, BaseMultiActionAgent, Tool
from langchain_community.utilities import SerpAPIWrapper
def random_word(query: str) -> str:
print("\nNow I'm doing this!")
return "foo"
search = SerpAPIWrapper()
tools = [
Tool(
name="Search",
func=search.run,
description="useful for when you need to answer questions about current events",
),
Tool(
name="RandomWord",
func=random_word,
description="call this to get a random word.",
),
]
from typing import Any, List, Tuple, Union
from langchain_core.agents import AgentAction, AgentFinish
class FakeAgent(BaseMultiActionAgent):
"""Fake Custom Agent."""
@property
def input_keys(self):
return ["input"]
def plan(
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
) -> Union[List[AgentAction], AgentFinish]:
"""Given input, decided what to do.
Args:
intermediate_steps: Steps the LLM has taken to date,
along with observations
**kwargs: User inputs.
Returns:
Action specifying what tool to use.
"""
if len(intermediate_steps) == 0:
return [
| AgentAction(tool="Search", tool_input=kwargs["input"], log="") | langchain_core.agents.AgentAction |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet doctran')
import json
from langchain_community.document_transformers import DoctranQATransformer
from langchain_core.documents import Document
from dotenv import load_dotenv
load_dotenv()
sample_text = """[Generated with ChatGPT]
Confidential Document - For Internal Use Only
Date: July 1, 2023
Subject: Updates and Discussions on Various Topics
Dear Team,
I hope this email finds you well. In this document, I would like to provide you with some important updates and discuss various topics that require our attention. Please treat the information contained herein as highly confidential.
Security and Privacy Measures
As part of our ongoing commitment to ensure the security and privacy of our customers' data, we have implemented robust measures across all our systems. We would like to commend John Doe (email: john.doe@example.com) from the IT department for his diligent work in enhancing our network security. Moving forward, we kindly remind everyone to strictly adhere to our data protection policies and guidelines. Additionally, if you come across any potential security risks or incidents, please report them immediately to our dedicated team at security@example.com.
HR Updates and Employee Benefits
Recently, we welcomed several new team members who have made significant contributions to their respective departments. I would like to recognize Jane Smith (SSN: 049-45-5928) for her outstanding performance in customer service. Jane has consistently received positive feedback from our clients. Furthermore, please remember that the open enrollment period for our employee benefits program is fast approaching. Should you have any questions or require assistance, please contact our HR representative, Michael Johnson (phone: 418-492-3850, email: michael.johnson@example.com).
Marketing Initiatives and Campaigns
Our marketing team has been actively working on developing new strategies to increase brand awareness and drive customer engagement. We would like to thank Sarah Thompson (phone: 415-555-1234) for her exceptional efforts in managing our social media platforms. Sarah has successfully increased our follower base by 20% in the past month alone. Moreover, please mark your calendars for the upcoming product launch event on July 15th. We encourage all team members to attend and support this exciting milestone for our company.
Research and Development Projects
In our pursuit of innovation, our research and development department has been working tirelessly on various projects. I would like to acknowledge the exceptional work of David Rodriguez (email: david.rodriguez@example.com) in his role as project lead. David's contributions to the development of our cutting-edge technology have been instrumental. Furthermore, we would like to remind everyone to share their ideas and suggestions for potential new projects during our monthly R&D brainstorming session, scheduled for July 10th.
Please treat the information in this document with utmost confidentiality and ensure that it is not shared with unauthorized individuals. If you have any questions or concerns regarding the topics discussed, please do not hesitate to reach out to me directly.
Thank you for your attention, and let's continue to work together to achieve our goals.
Best regards,
Jason Fan
Cofounder & CEO
Psychic
jason@psychic.dev
"""
print(sample_text)
documents = [Document(page_content=sample_text)]
qa_transformer = | DoctranQATransformer() | langchain_community.document_transformers.DoctranQATransformer |
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
history = StreamlitChatMessageHistory(key="chat_messages")
history.add_user_message("hi!")
history.add_ai_message("whats up?")
history.messages
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
msgs = StreamlitChatMessageHistory(key="special_app_key")
if len(msgs.messages) == 0:
msgs.add_ai_message("How can I help you?")
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are an AI chatbot having a conversation with a human."),
MessagesPlaceholder(variable_name="history"),
("human", "{question}"),
]
)
chain = prompt | | ChatOpenAI() | langchain_openai.ChatOpenAI |
from typing import Callable, List
from langchain.schema import (
HumanMessage,
SystemMessage,
)
from langchain_openai import ChatOpenAI
class DialogueAgent:
def __init__(
self,
name: str,
system_message: SystemMessage,
model: ChatOpenAI,
) -> None:
self.name = name
self.system_message = system_message
self.model = model
self.prefix = f"{self.name}: "
self.reset()
def reset(self):
self.message_history = ["Here is the conversation so far."]
def send(self) -> str:
"""
Applies the chatmodel to the message history
and returns the message string
"""
message = self.model(
[
self.system_message,
HumanMessage(content="\n".join(self.message_history + [self.prefix])),
]
)
return message.content
def receive(self, name: str, message: str) -> None:
"""
Concatenates {message} spoken by {name} into message history
"""
self.message_history.append(f"{name}: {message}")
class DialogueSimulator:
def __init__(
self,
agents: List[DialogueAgent],
selection_function: Callable[[int, List[DialogueAgent]], int],
) -> None:
self.agents = agents
self._step = 0
self.select_next_speaker = selection_function
def reset(self):
for agent in self.agents:
agent.reset()
def inject(self, name: str, message: str):
"""
Initiates the conversation with a {message} from {name}
"""
for agent in self.agents:
agent.receive(name, message)
self._step += 1
def step(self) -> tuple[str, str]:
speaker_idx = self.select_next_speaker(self._step, self.agents)
speaker = self.agents[speaker_idx]
message = speaker.send()
for receiver in self.agents:
receiver.receive(speaker.name, message)
self._step += 1
return speaker.name, message
protagonist_name = "Harry Potter"
storyteller_name = "Dungeon Master"
quest = "Find all of Lord Voldemort's seven horcruxes."
word_limit = 50 # word limit for task brainstorming
game_description = f"""Here is the topic for a Dungeons & Dragons game: {quest}.
There is one player in this game: the protagonist, {protagonist_name}.
The story is narrated by the storyteller, {storyteller_name}."""
player_descriptor_system_message = SystemMessage(
content="You can add detail to the description of a Dungeons & Dragons player."
)
protagonist_specifier_prompt = [
player_descriptor_system_message,
HumanMessage(
content=f"""{game_description}
Please reply with a creative description of the protagonist, {protagonist_name}, in {word_limit} words or less.
Speak directly to {protagonist_name}.
Do not add anything else."""
),
]
protagonist_description = | ChatOpenAI(temperature=1.0) | langchain_openai.ChatOpenAI |
from langchain.output_parsers.enum import EnumOutputParser
from enum import Enum
class Colors(Enum):
RED = "red"
GREEN = "green"
BLUE = "blue"
parser = | EnumOutputParser(enum=Colors) | langchain.output_parsers.enum.EnumOutputParser |
import uuid
from pathlib import Path
import langchain
import torch
from bs4 import BeautifulSoup as Soup
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryByteStore, LocalFileStore
from langchain_community.document_loaders.recursive_url_loader import (
RecursiveUrlLoader,
)
from langchain_community.vectorstores import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter # noqa
DOCSTORE_DIR = "."
DOCSTORE_ID_KEY = "doc_id"
loader = RecursiveUrlLoader(
"https://ar5iv.labs.arxiv.org/html/1706.03762",
max_depth=2,
extractor=lambda x: Soup(x, "html.parser").text,
)
data = loader.load()
print(f"Loaded {len(data)} documents")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
print(f"Split into {len(all_splits)} documents")
from langchain_community.embeddings import QuantizedBiEncoderEmbeddings
from langchain_core.embeddings import Embeddings
model_name = "Intel/bge-small-en-v1.5-rag-int8-static"
encode_kwargs = {"normalize_embeddings": True} # set True to compute cosine similarity
model_inc = QuantizedBiEncoderEmbeddings(
model_name=model_name,
encode_kwargs=encode_kwargs,
query_instruction="Represent this sentence for searching relevant passages: ",
)
def get_multi_vector_retriever(
docstore_id_key: str, collection_name: str, embedding_function: Embeddings
):
"""Create the composed retriever object."""
vectorstore = Chroma(
collection_name=collection_name,
embedding_function=embedding_function,
)
store = InMemoryByteStore()
return MultiVectorRetriever(
vectorstore=vectorstore,
byte_store=store,
id_key=docstore_id_key,
)
retriever = get_multi_vector_retriever(DOCSTORE_ID_KEY, "multi_vec_store", model_inc)
child_text_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
id_key = "doc_id"
doc_ids = [str(uuid.uuid4()) for _ in all_splits]
sub_docs = []
for i, doc in enumerate(all_splits):
_id = doc_ids[i]
_sub_docs = child_text_splitter.split_documents([doc])
for _doc in _sub_docs:
_doc.metadata[id_key] = _id
sub_docs.extend(_sub_docs)
retriever.vectorstore.add_documents(sub_docs)
retriever.docstore.mset(list(zip(doc_ids, all_splits)))
import torch
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "Intel/neural-chat-7b-v3-3"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="auto", torch_dtype=torch.bfloat16
)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=100)
hf = | HuggingFacePipeline(pipeline=pipe) | langchain.llms.huggingface_pipeline.HuggingFacePipeline |
get_ipython().run_line_magic('pip', 'install -U --quiet langchain langchain_community openai chromadb langchain-experimental')
get_ipython().run_line_magic('pip', 'install --quiet "unstructured[all-docs]" pypdf pillow pydantic lxml pillow matplotlib chromadb tiktoken')
import logging
import zipfile
import requests
logging.basicConfig(level=logging.INFO)
data_url = "https://storage.googleapis.com/benchmarks-artifacts/langchain-docs-benchmarking/cj.zip"
result = requests.get(data_url)
filename = "cj.zip"
with open(filename, "wb") as file:
file.write(result.content)
with zipfile.ZipFile(filename, "r") as zip_ref:
zip_ref.extractall()
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("./cj/cj.pdf")
docs = loader.load()
tables = []
texts = [d.page_content for d in docs]
len(texts)
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatVertexAI
from langchain_community.llms import VertexAI
from langchain_core.messages import AIMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda
def generate_text_summaries(texts, tables, summarize_texts=False):
"""
Summarize text elements
texts: List of str
tables: List of str
summarize_texts: Bool to summarize texts
"""
prompt_text = """You are an assistant tasked with summarizing tables and text for retrieval. \
These summaries will be embedded and used to retrieve the raw text or table elements. \
Give a concise summary of the table or text that is well optimized for retrieval. Table or text: {element} """
prompt = | PromptTemplate.from_template(prompt_text) | langchain.prompts.PromptTemplate.from_template |
get_ipython().system('poetry run pip install dgml-utils==0.3.0 --upgrade --quiet')
import os
from langchain_community.document_loaders import DocugamiLoader
DOCUGAMI_API_KEY = os.environ.get("DOCUGAMI_API_KEY")
docset_id = "26xpy3aes7xp"
document_ids = ["d7jqdzcj50sj", "cgd1eacfkchw"]
loader = DocugamiLoader(docset_id=docset_id, document_ids=document_ids)
chunks = loader.load()
len(chunks)
loader.min_text_length = 64
loader.include_xml_tags = True
chunks = loader.load()
for chunk in chunks[:5]:
print(chunk)
get_ipython().system('poetry run pip install --upgrade langchain-openai tiktoken chromadb hnswlib')
loader = DocugamiLoader(docset_id="zo954yqy53wp")
chunks = loader.load()
for chunk in chunks:
stripped_metadata = chunk.metadata.copy()
for key in chunk.metadata:
if key not in ["name", "xpath", "id", "structure"]:
del stripped_metadata[key]
chunk.metadata = stripped_metadata
print(len(chunks))
from langchain.chains import RetrievalQA
from langchain_community.vectorstores.chroma import Chroma
from langchain_openai import OpenAI, OpenAIEmbeddings
embedding = OpenAIEmbeddings()
vectordb = Chroma.from_documents(documents=chunks, embedding=embedding)
retriever = vectordb.as_retriever()
qa_chain = RetrievalQA.from_chain_type(
llm=OpenAI(), chain_type="stuff", retriever=retriever, return_source_documents=True
)
qa_chain("What can tenants do with signage on their properties?")
chain_response = qa_chain("What is rentable area for the property owned by DHA Group?")
chain_response["result"] # correct answer should be 13,500 sq ft
chain_response["source_documents"]
loader = DocugamiLoader(docset_id="zo954yqy53wp")
loader.include_xml_tags = (
True # for additional semantics from the Docugami knowledge graph
)
chunks = loader.load()
print(chunks[0].metadata)
get_ipython().system('poetry run pip install --upgrade lark --quiet')
from langchain.chains.query_constructor.schema import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_community.vectorstores.chroma import Chroma
EXCLUDE_KEYS = ["id", "xpath", "structure"]
metadata_field_info = [
AttributeInfo(
name=key,
description=f"The {key} for this chunk",
type="string",
)
for key in chunks[0].metadata
if key.lower() not in EXCLUDE_KEYS
]
document_content_description = "Contents of this chunk"
llm = OpenAI(temperature=0)
vectordb = Chroma.from_documents(documents=chunks, embedding=embedding)
retriever = SelfQueryRetriever.from_llm(
llm, vectordb, document_content_description, metadata_field_info, verbose=True
)
qa_chain = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
verbose=True,
)
qa_chain(
"What is rentable area for the property owned by DHA Group?"
) # correct answer should be 13,500 sq ft
from typing import Dict, List
from langchain_community.document_loaders import DocugamiLoader
from langchain_core.documents import Document
loader = DocugamiLoader(docset_id="zo954yqy53wp")
loader.include_xml_tags = (
True # for additional semantics from the Docugami knowledge graph
)
loader.parent_hierarchy_levels = 3 # for expanded context
loader.max_text_length = (
1024 * 8
) # 8K chars are roughly 2K tokens (ref: https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them)
loader.include_project_metadata_in_doc_metadata = (
False # Not filtering on vector metadata, so remove to lighten the vectors
)
chunks: List[Document] = loader.load()
parents_by_id: Dict[str, Document] = {}
children_by_id: Dict[str, Document] = {}
for chunk in chunks:
chunk_id = chunk.metadata.get("id")
parent_chunk_id = chunk.metadata.get(loader.parent_id_key)
if not parent_chunk_id:
parents_by_id[chunk_id] = chunk
else:
children_by_id[chunk_id] = chunk
for id, chunk in list(children_by_id.items())[:5]:
parent_chunk_id = chunk.metadata.get(loader.parent_id_key)
if parent_chunk_id:
print(f"PARENT CHUNK {parent_chunk_id}: {parents_by_id[parent_chunk_id]}")
print(f"CHUNK {id}: {chunk}")
from langchain.retrievers.multi_vector import MultiVectorRetriever, SearchType
from langchain.storage import InMemoryStore
from langchain_community.vectorstores.chroma import Chroma
from langchain_openai import OpenAIEmbeddings
vectorstore = Chroma(collection_name="big2small", embedding_function=OpenAIEmbeddings())
store = | InMemoryStore() | langchain.storage.InMemoryStore |
import os
import yaml
get_ipython().system('wget https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml -O openai_openapi.yaml')
get_ipython().system('wget https://www.klarna.com/us/shopping/public/openai/v0/api-docs -O klarna_openapi.yaml')
get_ipython().system('wget https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml -O spotify_openapi.yaml')
from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec
with open("openai_openapi.yaml") as f:
raw_openai_api_spec = yaml.load(f, Loader=yaml.Loader)
openai_api_spec = reduce_openapi_spec(raw_openai_api_spec)
with open("klarna_openapi.yaml") as f:
raw_klarna_api_spec = yaml.load(f, Loader=yaml.Loader)
klarna_api_spec = reduce_openapi_spec(raw_klarna_api_spec)
with open("spotify_openapi.yaml") as f:
raw_spotify_api_spec = yaml.load(f, Loader=yaml.Loader)
spotify_api_spec = reduce_openapi_spec(raw_spotify_api_spec)
import spotipy.util as util
from langchain.requests import RequestsWrapper
def construct_spotify_auth_headers(raw_spec: dict):
scopes = list(
raw_spec["components"]["securitySchemes"]["oauth_2_0"]["flows"][
"authorizationCode"
]["scopes"].keys()
)
access_token = util.prompt_for_user_token(scope=",".join(scopes))
return {"Authorization": f"Bearer {access_token}"}
headers = construct_spotify_auth_headers(raw_spotify_api_spec)
requests_wrapper = RequestsWrapper(headers=headers)
endpoints = [
(route, operation)
for route, operations in raw_spotify_api_spec["paths"].items()
for operation in operations
if operation in ["get", "post"]
]
len(endpoints)
import tiktoken
enc = tiktoken.encoding_for_model("gpt-4")
def count_tokens(s):
return len(enc.encode(s))
count_tokens(yaml.dump(raw_spotify_api_spec))
from langchain_community.agent_toolkits.openapi import planner
from langchain_openai import OpenAI
llm = | OpenAI(model_name="gpt-4", temperature=0.0) | langchain_openai.OpenAI |
get_ipython().run_line_magic('pip', 'install -qU langchain-text-splitters')
from langchain_text_splitters import HTMLHeaderTextSplitter
html_string = """
<!DOCTYPE html>
<html>
<body>
<div>
<h1>Foo</h1>
<p>Some intro text about Foo.</p>
<div>
<h2>Bar main section</h2>
<p>Some intro text about Bar.</p>
<h3>Bar subsection 1</h3>
<p>Some text about the first subtopic of Bar.</p>
<h3>Bar subsection 2</h3>
<p>Some text about the second subtopic of Bar.</p>
</div>
<div>
<h2>Baz</h2>
<p>Some text about Baz</p>
</div>
<br>
<p>Some concluding text about Foo</p>
</div>
</body>
</html>
"""
headers_to_split_on = [
("h1", "Header 1"),
("h2", "Header 2"),
("h3", "Header 3"),
]
html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
html_header_splits = html_splitter.split_text(html_string)
html_header_splits
from langchain_text_splitters import RecursiveCharacterTextSplitter
url = "https://plato.stanford.edu/entries/goedel/"
headers_to_split_on = [
("h1", "Header 1"),
("h2", "Header 2"),
("h3", "Header 3"),
("h4", "Header 4"),
]
html_splitter = HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
html_header_splits = html_splitter.split_text_from_url(url)
chunk_size = 500
chunk_overlap = 30
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
splits = text_splitter.split_documents(html_header_splits)
splits[80:85]
url = "https://www.cnn.com/2023/09/25/weather/el-nino-winter-us-climate/index.html"
headers_to_split_on = [
("h1", "Header 1"),
("h2", "Header 2"),
]
html_splitter = | HTMLHeaderTextSplitter(headers_to_split_on=headers_to_split_on) | langchain_text_splitters.HTMLHeaderTextSplitter |
import os
os.environ["GOOGLE_CSE_ID"] = ""
os.environ["GOOGLE_API_KEY"] = ""
from langchain.tools import Tool
from langchain_community.utilities import GoogleSearchAPIWrapper
search = GoogleSearchAPIWrapper()
tool = Tool(
name="google_search",
description="Search Google for recent results.",
func=search.run,
)
tool.run("Obama's first name?")
search = GoogleSearchAPIWrapper(k=1)
tool = Tool(
name="I'm Feeling Lucky",
description="Search Google and return the first result.",
func=search.run,
)
tool.run("python")
search = | GoogleSearchAPIWrapper() | langchain_community.utilities.GoogleSearchAPIWrapper |
from langchain.indexes import SQLRecordManager, index
from langchain_core.documents import Document
from langchain_elasticsearch import ElasticsearchStore
from langchain_openai import OpenAIEmbeddings
collection_name = "test_index"
embedding = OpenAIEmbeddings()
vectorstore = ElasticsearchStore(
es_url="http://localhost:9200", index_name="test_index", embedding=embedding
)
namespace = f"elasticsearch/{collection_name}"
record_manager = SQLRecordManager(
namespace, db_url="sqlite:///record_manager_cache.sql"
)
record_manager.create_schema()
doc1 = Document(page_content="kitty", metadata={"source": "kitty.txt"})
doc2 = Document(page_content="doggy", metadata={"source": "doggy.txt"})
def _clear():
"""Hacky helper method to clear content. See the `full` mode section to to understand why it works."""
index([], record_manager, vectorstore, cleanup="full", source_id_key="source")
_clear()
index(
[doc1, doc1, doc1, doc1, doc1],
record_manager,
vectorstore,
cleanup=None,
source_id_key="source",
)
_clear()
index([doc1, doc2], record_manager, vectorstore, cleanup=None, source_id_key="source")
index([doc1, doc2], record_manager, vectorstore, cleanup=None, source_id_key="source")
_clear()
index(
[doc1, doc2],
record_manager,
vectorstore,
cleanup="incremental",
source_id_key="source",
)
index(
[doc1, doc2],
record_manager,
vectorstore,
cleanup="incremental",
source_id_key="source",
)
index([], record_manager, vectorstore, cleanup="incremental", source_id_key="source")
changed_doc_2 = Document(page_content="puppy", metadata={"source": "doggy.txt"})
index(
[changed_doc_2],
record_manager,
vectorstore,
cleanup="incremental",
source_id_key="source",
)
_clear()
all_docs = [doc1, doc2]
index(all_docs, record_manager, vectorstore, cleanup="full", source_id_key="source")
del all_docs[0]
all_docs
index(all_docs, record_manager, vectorstore, cleanup="full", source_id_key="source")
from langchain_text_splitters import CharacterTextSplitter
doc1 = Document(
page_content="kitty kitty kitty kitty kitty", metadata={"source": "kitty.txt"}
)
doc2 = Document(page_content="doggy doggy the doggy", metadata={"source": "doggy.txt"})
new_docs = CharacterTextSplitter(
separator="t", keep_separator=True, chunk_size=12, chunk_overlap=2
).split_documents([doc1, doc2])
new_docs
_clear()
index(
new_docs,
record_manager,
vectorstore,
cleanup="incremental",
source_id_key="source",
)
changed_doggy_docs = [
Document(page_content="woof woof", metadata={"source": "doggy.txt"}),
Document(page_content="woof woof woof", metadata={"source": "doggy.txt"}),
]
index(
changed_doggy_docs,
record_manager,
vectorstore,
cleanup="incremental",
source_id_key="source",
)
vectorstore.similarity_search("dog", k=30)
from langchain_community.document_loaders.base import BaseLoader
class MyCustomLoader(BaseLoader):
def lazy_load(self):
text_splitter = CharacterTextSplitter(
separator="t", keep_separator=True, chunk_size=12, chunk_overlap=2
)
docs = [
Document(page_content="woof woof", metadata={"source": "doggy.txt"}),
Document(page_content="woof woof woof", metadata={"source": "doggy.txt"}),
]
yield from text_splitter.split_documents(docs)
def load(self):
return list(self.lazy_load())
_clear()
loader = MyCustomLoader()
loader.load()
| index(loader, record_manager, vectorstore, cleanup="full", source_id_key="source") | langchain.indexes.index |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet azure-search-documents')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet azure-identity')
import os
from langchain_community.vectorstores.azuresearch import AzureSearch
from langchain_openai import AzureOpenAIEmbeddings, OpenAIEmbeddings
openai_api_key: str = "PLACEHOLDER FOR YOUR API KEY"
openai_api_version: str = "2023-05-15"
model: str = "text-embedding-ada-002"
azure_endpoint: str = "PLACEHOLDER FOR YOUR AZURE OPENAI ENDPOINT"
azure_openai_api_key: str = "PLACEHOLDER FOR YOUR AZURE OPENAI KEY"
azure_openai_api_version: str = "2023-05-15"
azure_deployment: str = "text-embedding-ada-002"
vector_store_address: str = "YOUR_AZURE_SEARCH_ENDPOINT"
vector_store_password: str = "YOUR_AZURE_SEARCH_ADMIN_KEY"
embeddings: OpenAIEmbeddings = OpenAIEmbeddings(
openai_api_key=openai_api_key, openai_api_version=openai_api_version, model=model
)
embeddings: AzureOpenAIEmbeddings = AzureOpenAIEmbeddings(
azure_deployment=azure_deployment,
openai_api_version=azure_openai_api_version,
azure_endpoint=azure_endpoint,
api_key=azure_openai_api_key,
)
index_name: str = "langchain-vector-demo"
vector_store: AzureSearch = AzureSearch(
azure_search_endpoint=vector_store_address,
azure_search_key=vector_store_password,
index_name=index_name,
embedding_function=embeddings.embed_query,
)
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt", encoding="utf-8")
documents = loader.load()
text_splitter = | CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | langchain_text_splitters.CharacterTextSplitter |
from langchain_community.vectorstores import Bagel
texts = ["hello bagel", "hello langchain", "I love salad", "my car", "a dog"]
cluster = Bagel.from_texts(cluster_name="testing", texts=texts)
cluster.similarity_search("bagel", k=3)
cluster.similarity_search_with_score("bagel", k=3)
cluster.delete_cluster()
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
loader = | TextLoader("../../modules/state_of_the_union.txt") | langchain_community.document_loaders.TextLoader |
api_key = ""
from langchain_community.document_loaders import ToMarkdownLoader
loader = | ToMarkdownLoader(
url="https://python.langchain.com/docs/get_started/introduction", api_key=api_key
) | langchain_community.document_loaders.ToMarkdownLoader |
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
tools = load_tools(["google-serper"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run("What is the weather in Pomfret?")
tools = load_tools(["searchapi"], llm=llm)
agent = initialize_agent(
tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
)
agent.run("What is the weather in Pomfret?")
tools = | load_tools(["serpapi"], llm=llm) | langchain.agents.load_tools |
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.llms import GradientLLM
import os
from getpass import getpass
if not os.environ.get("GRADIENT_ACCESS_TOKEN", None):
os.environ["GRADIENT_ACCESS_TOKEN"] = getpass("gradient.ai access token:")
if not os.environ.get("GRADIENT_WORKSPACE_ID", None):
os.environ["GRADIENT_WORKSPACE_ID"] = getpass("gradient.ai workspace id:")
get_ipython().run_line_magic('pip', 'install --upgrade --quiet gradientai')
import gradientai
client = gradientai.Gradient()
models = client.list_models(only_base=True)
for model in models:
print(model.id)
new_model = models[-1].create_model_adapter(name="my_model_adapter")
new_model.id, new_model.name
llm = GradientLLM(
model="674119b5-f19e-4856-add2-767ae7f7d7ef_model_adapter",
model_kwargs=dict(max_generated_token_count=128),
)
template = """Question: {question}
Answer: """
prompt = | PromptTemplate.from_template(template) | langchain.prompts.PromptTemplate.from_template |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai wikipedia')
from operator import itemgetter
from langchain.agents import AgentExecutor, load_tools
from langchain.agents.format_scratchpad import format_to_openai_function_messages
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_core.prompt_values import ChatPromptValue
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai import ChatOpenAI
wiki = WikipediaQueryRun(
api_wrapper=WikipediaAPIWrapper(top_k_results=5, doc_content_chars_max=10_000)
)
tools = [wiki]
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant"),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
llm = ChatOpenAI(model="gpt-3.5-turbo")
agent = (
{
"input": itemgetter("input"),
"agent_scratchpad": lambda x: format_to_openai_function_messages(
x["intermediate_steps"]
),
}
| prompt
| llm.bind_functions(tools)
| OpenAIFunctionsAgentOutputParser()
)
agent_executor = | AgentExecutor(agent=agent, tools=tools, verbose=True) | langchain.agents.AgentExecutor |
from langchain_community.tools.edenai import (
EdenAiExplicitImageTool,
EdenAiObjectDetectionTool,
EdenAiParsingIDTool,
EdenAiParsingInvoiceTool,
EdenAiSpeechToTextTool,
EdenAiTextModerationTool,
EdenAiTextToSpeechTool,
)
from langchain.agents import AgentType, initialize_agent
from langchain_community.llms import EdenAI
llm = EdenAI(
feature="text", provider="openai", params={"temperature": 0.2, "max_tokens": 250}
)
tools = [
EdenAiTextModerationTool(providers=["openai"], language="en"),
EdenAiObjectDetectionTool(providers=["google", "api4ai"]),
EdenAiTextToSpeechTool(providers=["amazon"], language="en", voice="MALE"),
EdenAiExplicitImageTool(providers=["amazon", "google"]),
EdenAiSpeechToTextTool(providers=["amazon"]),
EdenAiParsingIDTool(providers=["amazon", "klippa"], language="en"),
| EdenAiParsingInvoiceTool(providers=["amazon", "google"], language="en") | langchain_community.tools.edenai.EdenAiParsingInvoiceTool |
from langchain import hub
from langchain.agents import AgentExecutor, create_react_agent
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_openai import ChatOpenAI
api_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=100)
tool = | WikipediaQueryRun(api_wrapper=api_wrapper) | langchain_community.tools.WikipediaQueryRun |
from langchain_community.llms.azureml_endpoint import AzureMLOnlineEndpoint
from langchain_community.llms.azureml_endpoint import (
AzureMLEndpointApiType,
LlamaContentFormatter,
)
from langchain_core.messages import HumanMessage
llm = AzureMLOnlineEndpoint(
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/score",
endpoint_api_type=AzureMLEndpointApiType.realtime,
endpoint_api_key="my-api-key",
content_formatter=LlamaContentFormatter(),
model_kwargs={"temperature": 0.8, "max_new_tokens": 400},
)
response = llm.invoke("Write me a song about sparkling water:")
response
response = llm.invoke("Write me a song about sparkling water:", temperature=0.5)
response
from langchain_community.llms.azureml_endpoint import (
AzureMLEndpointApiType,
LlamaContentFormatter,
)
from langchain_core.messages import HumanMessage
llm = AzureMLOnlineEndpoint(
endpoint_url="https://<your-endpoint>.<your_region>.inference.ml.azure.com/v1/completions",
endpoint_api_type=AzureMLEndpointApiType.serverless,
endpoint_api_key="my-api-key",
content_formatter=LlamaContentFormatter(),
model_kwargs={"temperature": 0.8, "max_new_tokens": 400},
)
response = llm.invoke("Write me a song about sparkling water:")
response
import json
import os
from typing import Dict
from langchain_community.llms.azureml_endpoint import (
AzureMLOnlineEndpoint,
ContentFormatterBase,
)
class CustomFormatter(ContentFormatterBase):
content_type = "application/json"
accepts = "application/json"
def format_request_payload(self, prompt: str, model_kwargs: Dict) -> bytes:
input_str = json.dumps(
{
"inputs": [prompt],
"parameters": model_kwargs,
"options": {"use_cache": False, "wait_for_model": True},
}
)
return str.encode(input_str)
def format_response_payload(self, output: bytes) -> str:
response_json = json.loads(output)
return response_json[0]["summary_text"]
content_formatter = CustomFormatter()
llm = AzureMLOnlineEndpoint(
endpoint_api_type="realtime",
endpoint_api_key=os.getenv("BART_ENDPOINT_API_KEY"),
endpoint_url=os.getenv("BART_ENDPOINT_URL"),
model_kwargs={"temperature": 0.8, "max_new_tokens": 400},
content_formatter=content_formatter,
)
large_text = """On January 7, 2020, Blockberry Creative announced that HaSeul would not participate in the promotion for Loona's
next album because of mental health concerns. She was said to be diagnosed with "intermittent anxiety symptoms" and would be
taking time to focus on her health.[39] On February 5, 2020, Loona released their second EP titled [#] (read as hash), along
with the title track "So What".[40] Although HaSeul did not appear in the title track, her vocals are featured on three other
songs on the album, including "365". Once peaked at number 1 on the daily Gaon Retail Album Chart,[41] the EP then debuted at
number 2 on the weekly Gaon Album Chart. On March 12, 2020, Loona won their first music show trophy with "So What" on Mnet's
M Countdown.[42]
On October 19, 2020, Loona released their third EP titled [12:00] (read as midnight),[43] accompanied by its first single
"Why Not?". HaSeul was again not involved in the album, out of her own decision to focus on the recovery of her health.[44]
The EP then became their first album to enter the Billboard 200, debuting at number 112.[45] On November 18, Loona released
the music video for "Star", another song on [12:00].[46] Peaking at number 40, "Star" is Loona's first entry on the Billboard
Mainstream Top 40, making them the second K-pop girl group to enter the chart.[47]
On June 1, 2021, Loona announced that they would be having a comeback on June 28, with their fourth EP, [&] (read as and).
[48] The following day, on June 2, a teaser was posted to Loona's official social media accounts showing twelve sets of eyes,
confirming the return of member HaSeul who had been on hiatus since early 2020.[49] On June 12, group members YeoJin, Kim Lip,
Choerry, and Go Won released the song "Yum-Yum" as a collaboration with Cocomong.[50] On September 8, they released another
collaboration song named "Yummy-Yummy".[51] On June 27, 2021, Loona announced at the end of their special clip that they are
making their Japanese debut on September 15 under Universal Music Japan sublabel EMI Records.[52] On August 27, it was announced
that Loona will release the double A-side single, "Hula Hoop / Star Seed" on September 15, with a physical CD release on October
20.[53] In December, Chuu filed an injunction to suspend her exclusive contract with Blockberry Creative.[54][55]
"""
summarized_text = llm.invoke(large_text)
print(summarized_text)
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.llms.azureml_endpoint import DollyContentFormatter
formatter_template = "Write a {word_count} word essay about {topic}."
prompt = PromptTemplate(
input_variables=["word_count", "topic"], template=formatter_template
)
content_formatter = | DollyContentFormatter() | langchain_community.llms.azureml_endpoint.DollyContentFormatter |
from langchain_community.document_loaders.blob_loaders.youtube_audio import (
YoutubeAudioLoader,
)
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers import (
OpenAIWhisperParser,
OpenAIWhisperParserLocal,
)
get_ipython().run_line_magic('pip', 'install --upgrade --quiet yt_dlp')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pydub')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet librosa')
local = False
urls = ["https://youtu.be/kCc8FmEb1nY", "https://youtu.be/VMj-3S1tku0"]
save_dir = "~/Downloads/YouTube"
if local:
loader = GenericLoader(
YoutubeAudioLoader(urls, save_dir), OpenAIWhisperParserLocal()
)
else:
loader = GenericLoader(YoutubeAudioLoader(urls, save_dir), | OpenAIWhisperParser() | langchain_community.document_loaders.parsers.OpenAIWhisperParser |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet bibtexparser pymupdf')
from langchain_community.document_loaders import BibtexLoader
import urllib.request
urllib.request.urlretrieve(
"https://www.fourmilab.ch/etexts/einstein/specrel/specrel.pdf", "einstein1905.pdf"
)
bibtex_text = """
@article{einstein1915,
title={Die Feldgleichungen der Gravitation},
abstract={Die Grundgleichungen der Gravitation, die ich hier entwickeln werde, wurden von mir in einer Abhandlung: ,,Die formale Grundlage der allgemeinen Relativit{\"a}tstheorie`` in den Sitzungsberichten der Preu{\ss}ischen Akademie der Wissenschaften 1915 ver{\"o}ffentlicht.},
author={Einstein, Albert},
journal={Sitzungsberichte der K{\"o}niglich Preu{\ss}ischen Akademie der Wissenschaften},
volume={1915},
number={1},
pages={844--847},
year={1915},
doi={10.1002/andp.19163540702},
link={https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19163540702},
file={einstein1905.pdf}
}
"""
with open("./biblio.bib", "w") as file:
file.write(bibtex_text)
docs = | BibtexLoader("./biblio.bib") | langchain_community.document_loaders.BibtexLoader |
from langchain.chains import RetrievalQAWithSourcesChain
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.jaguar import Jaguar
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
"""
Load a text file into a set of documents
"""
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = | CharacterTextSplitter(chunk_size=1000, chunk_overlap=300) | langchain_text_splitters.CharacterTextSplitter |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet timescale-vector')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken')
import os
from dotenv import find_dotenv, load_dotenv
_ = load_dotenv(find_dotenv())
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
from typing import Tuple
from datetime import datetime, timedelta
from langchain.docstore.document import Document
from langchain_community.document_loaders import TextLoader
from langchain_community.document_loaders.json_loader import JSONLoader
from langchain_community.vectorstores.timescalevector import TimescaleVector
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../../extras/modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = | OpenAIEmbeddings() | langchain_openai.OpenAIEmbeddings |
get_ipython().run_cell_magic('writefile', 'wechat_chats.txt', '女朋友 2023/09/16 2:51 PM\n天气有点凉\n\n男朋友 2023/09/16 2:51 PM\n珍簟凉风著,瑶琴寄恨生。嵇君懒书札,底物慰秋情。\n\n女朋友 2023/09/16 3:06 PM\n忙什么呢\n\n男朋友 2023/09/16 3:06 PM\n今天只干成了一件像样的事\n那就是想你\n\n女朋友 2023/09/16 3:06 PM\n[动画表情]\n')
import logging
import re
from typing import Iterator, List
from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage
logger = logging.getLogger()
class WeChatChatLoader(chat_loaders.BaseChatLoader):
def __init__(self, path: str):
"""
Initialize the Discord chat loader.
Args:
path: Path to the exported Discord chat text file.
"""
self.path = path
self._message_line_regex = re.compile(
r"(?P<sender>.+?) (?P<timestamp>\d{4}/\d{2}/\d{2} \d{1,2}:\d{2} (?:AM|PM))", # noqa
)
def _append_message_to_results(
self,
results: List,
current_sender: str,
current_timestamp: str,
current_content: List[str],
):
content = "\n".join(current_content).strip()
if not re.match(r"\[.*\]", content):
results.append(
HumanMessage(
content=content,
additional_kwargs={
"sender": current_sender,
"events": [{"message_time": current_timestamp}],
},
)
)
return results
def _load_single_chat_session_from_txt(
self, file_path: str
) -> chat_loaders.ChatSession:
"""
Load a single chat session from a text file.
Args:
file_path: Path to the text file containing the chat messages.
Returns:
A `ChatSession` object containing the loaded chat messages.
"""
with open(file_path, "r", encoding="utf-8") as file:
lines = file.readlines()
results: List[BaseMessage] = []
current_sender = None
current_timestamp = None
current_content = []
for line in lines:
if re.match(self._message_line_regex, line):
if current_sender and current_content:
results = self._append_message_to_results(
results, current_sender, current_timestamp, current_content
)
current_sender, current_timestamp = re.match(
self._message_line_regex, line
).groups()
current_content = []
else:
current_content.append(line.strip())
if current_sender and current_content:
results = self._append_message_to_results(
results, current_sender, current_timestamp, current_content
)
return chat_loaders.ChatSession(messages=results)
def lazy_load(self) -> Iterator[chat_loaders.ChatSession]:
"""
Lazy load the messages from the chat file and yield them in the required format.
Yields:
A `ChatSession` object containing the loaded chat messages.
"""
yield self._load_single_chat_session_from_txt(self.path)
loader = WeChatChatLoader(
path="./wechat_chats.txt",
)
from typing import List
from langchain_community.chat_loaders.base import ChatSession
from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages)
messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender="男朋友"))
messages
from langchain_openai import ChatOpenAI
llm = | ChatOpenAI() | langchain_openai.ChatOpenAI |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai')
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
runnable = RunnableParallel(
passed=RunnablePassthrough(),
extra=RunnablePassthrough.assign(mult=lambda x: x["num"] * 3),
modified=lambda x: x["num"] + 1,
)
runnable.invoke({"num": 1})
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
vectorstore = FAISS.from_texts(
["harrison worked at kensho"], embedding= | OpenAIEmbeddings() | langchain_openai.OpenAIEmbeddings |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet typesense openapi-schema-pydantic langchain-openai tiktoken')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Typesense
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = | OpenAIEmbeddings() | langchain_openai.OpenAIEmbeddings |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet annoy')
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Annoy
embeddings_func = HuggingFaceEmbeddings()
texts = ["pizza is great", "I love salad", "my car", "a dog"]
vector_store = Annoy.from_texts(texts, embeddings_func)
vector_store_v2 = Annoy.from_texts(
texts, embeddings_func, metric="dot", n_trees=100, n_jobs=1
)
vector_store.similarity_search("food", k=3)
vector_store.similarity_search_with_score("food", k=3)
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txtn.txtn.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
docs[:5]
vector_store_from_docs = | Annoy.from_documents(docs, embeddings_func) | langchain_community.vectorstores.Annoy.from_documents |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tigrisdb openapi-schema-pydantic langchain-openai tiktoken')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
os.environ["TIGRIS_PROJECT"] = getpass.getpass("Tigris Project Name:")
os.environ["TIGRIS_CLIENT_ID"] = getpass.getpass("Tigris Client Id:")
os.environ["TIGRIS_CLIENT_SECRET"] = getpass.getpass("Tigris Client Secret:")
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import Tigris
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = | CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | langchain_text_splitters.CharacterTextSplitter |
get_ipython().run_cell_magic('writefile', 'whatsapp_chat.txt', "[8/15/23, 9:12:33 AM] Dr. Feather: \u200eMessages and calls are end-to-end encrypted. No one outside of this chat, not even WhatsApp, can read or listen to them.\n[8/15/23, 9:12:43 AM] Dr. Feather: I spotted a rare Hyacinth Macaw yesterday in the Amazon Rainforest. Such a magnificent creature!\n\u200e[8/15/23, 9:12:48 AM] Dr. Feather: \u200eimage omitted\n[8/15/23, 9:13:15 AM] Jungle Jane: That's stunning! Were you able to observe its behavior?\n\u200e[8/15/23, 9:13:23 AM] Dr. Feather: \u200eimage omitted\n[8/15/23, 9:14:02 AM] Dr. Feather: Yes, it seemed quite social with other macaws. They're known for their playful nature.\n[8/15/23, 9:14:15 AM] Jungle Jane: How's the research going on parrot communication?\n\u200e[8/15/23, 9:14:30 AM] Dr. Feather: \u200eimage omitted\n[8/15/23, 9:14:50 AM] Dr. Feather: It's progressing well. We're learning so much about how they use sound and color to communicate.\n[8/15/23, 9:15:10 AM] Jungle Jane: That's fascinating! Can't wait to read your paper on it.\n[8/15/23, 9:15:20 AM] Dr. Feather: Thank you! I'll send you a draft soon.\n[8/15/23, 9:25:16 PM] Jungle Jane: Looking forward to it! Keep up the great work.\n")
from langchain_community.chat_loaders.whatsapp import WhatsAppChatLoader
loader = WhatsAppChatLoader(
path="./whatsapp_chat.txt",
)
from typing import List
from langchain_community.chat_loaders.base import ChatSession
from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
raw_messages = loader.lazy_load()
merged_messages = | merge_chat_runs(raw_messages) | langchain_community.chat_loaders.utils.merge_chat_runs |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet cohere')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet faiss')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet faiss-cpu')
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass("Cohere API Key:")
def pretty_print_docs(docs):
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]
)
)
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings import CohereEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
documents = TextLoader("../../modules/state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
retriever = FAISS.from_documents(texts, | CohereEmbeddings() | langchain_community.embeddings.CohereEmbeddings |
from langchain_community.document_loaders import UnstructuredODTLoader
loader = | UnstructuredODTLoader("example_data/fake.odt", mode="elements") | langchain_community.document_loaders.UnstructuredODTLoader |
from langchain.chains import RetrievalQAWithSourcesChain
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.jaguar import Jaguar
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
"""
Load a text file into a set of documents
"""
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=300)
docs = text_splitter.split_documents(documents)
"""
Instantiate a Jaguar vector store
"""
url = "http://192.168.5.88:8080/fwww/"
embeddings = OpenAIEmbeddings()
pod = "vdb"
store = "langchain_rag_store"
vector_index = "v"
vector_type = "cosine_fraction_float"
vector_dimension = 1536
vectorstore = Jaguar(
pod, store, vector_index, vector_type, vector_dimension, url, embeddings
)
"""
Login must be performed to authorize the client.
The environment variable JAGUAR_API_KEY or file $HOME/.jagrc
should contain the API key for accessing JaguarDB servers.
"""
vectorstore.login()
"""
Create vector store on the JaguarDB database server.
This should be done only once.
"""
metadata = "category char(16)"
text_size = 4096
vectorstore.create(metadata, text_size)
"""
Add the texts from the text splitter to our vectorstore
"""
vectorstore.add_documents(docs)
""" Get the retriever object """
retriever = vectorstore.as_retriever()
template = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.
Question: {question}
Context: {context}
Answer:
"""
prompt = | ChatPromptTemplate.from_template(template) | langchain_core.prompts.ChatPromptTemplate.from_template |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet doctran')
import json
from langchain_community.document_transformers import DoctranQATransformer
from langchain_core.documents import Document
from dotenv import load_dotenv
load_dotenv()
sample_text = """[Generated with ChatGPT]
Confidential Document - For Internal Use Only
Date: July 1, 2023
Subject: Updates and Discussions on Various Topics
Dear Team,
I hope this email finds you well. In this document, I would like to provide you with some important updates and discuss various topics that require our attention. Please treat the information contained herein as highly confidential.
Security and Privacy Measures
As part of our ongoing commitment to ensure the security and privacy of our customers' data, we have implemented robust measures across all our systems. We would like to commend John Doe (email: john.doe@example.com) from the IT department for his diligent work in enhancing our network security. Moving forward, we kindly remind everyone to strictly adhere to our data protection policies and guidelines. Additionally, if you come across any potential security risks or incidents, please report them immediately to our dedicated team at security@example.com.
HR Updates and Employee Benefits
Recently, we welcomed several new team members who have made significant contributions to their respective departments. I would like to recognize Jane Smith (SSN: 049-45-5928) for her outstanding performance in customer service. Jane has consistently received positive feedback from our clients. Furthermore, please remember that the open enrollment period for our employee benefits program is fast approaching. Should you have any questions or require assistance, please contact our HR representative, Michael Johnson (phone: 418-492-3850, email: michael.johnson@example.com).
Marketing Initiatives and Campaigns
Our marketing team has been actively working on developing new strategies to increase brand awareness and drive customer engagement. We would like to thank Sarah Thompson (phone: 415-555-1234) for her exceptional efforts in managing our social media platforms. Sarah has successfully increased our follower base by 20% in the past month alone. Moreover, please mark your calendars for the upcoming product launch event on July 15th. We encourage all team members to attend and support this exciting milestone for our company.
Research and Development Projects
In our pursuit of innovation, our research and development department has been working tirelessly on various projects. I would like to acknowledge the exceptional work of David Rodriguez (email: david.rodriguez@example.com) in his role as project lead. David's contributions to the development of our cutting-edge technology have been instrumental. Furthermore, we would like to remind everyone to share their ideas and suggestions for potential new projects during our monthly R&D brainstorming session, scheduled for July 10th.
Please treat the information in this document with utmost confidentiality and ensure that it is not shared with unauthorized individuals. If you have any questions or concerns regarding the topics discussed, please do not hesitate to reach out to me directly.
Thank you for your attention, and let's continue to work together to achieve our goals.
Best regards,
Jason Fan
Cofounder & CEO
Psychic
jason@psychic.dev
"""
print(sample_text)
documents = [ | Document(page_content=sample_text) | langchain_core.documents.Document |
import os
os.environ["SCENEX_API_KEY"] = "<YOUR_API_KEY>"
from langchain.agents import load_tools
tools = load_tools(["sceneXplain"])
from langchain.tools import SceneXplainTool
tool = SceneXplainTool()
from langchain.agents import initialize_agent
from langchain.memory import ConversationBufferMemory
from langchain_openai import OpenAI
llm = | OpenAI(temperature=0) | langchain_openai.OpenAI |
import requests
def download_drive_file(url: str, output_path: str = "chat.db") -> None:
file_id = url.split("/")[-2]
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
response = requests.get(download_url)
if response.status_code != 200:
print("Failed to download the file.")
return
with open(output_path, "wb") as file:
file.write(response.content)
print(f"File {output_path} downloaded.")
url = (
"https://drive.google.com/file/d/1NebNKqTA2NXApCmeH6mu0unJD2tANZzo/view?usp=sharing"
)
download_drive_file(url)
from langchain_community.chat_loaders.imessage import IMessageChatLoader
loader = IMessageChatLoader(
path="./chat.db",
)
from typing import List
from langchain_community.chat_loaders.base import ChatSession
from langchain_community.chat_loaders.utils import (
map_ai_messages,
merge_chat_runs,
)
raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages)
chat_sessions: List[ChatSession] = list(
map_ai_messages(merged_messages, sender="Tortoise")
)
chat_sessions[0]["messages"][:3]
from langchain.adapters.openai import convert_messages_for_finetuning
training_data = convert_messages_for_finetuning(chat_sessions)
print(f"Prepared {len(training_data)} dialogues for training")
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai')
import json
import time
from io import BytesIO
import openai
my_file = BytesIO()
for m in training_data:
my_file.write((json.dumps({"messages": m}) + "\n").encode("utf-8"))
my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")
status = openai.files.retrieve(training_file.id).status
start_time = time.time()
while status != "processed":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
status = openai.files.retrieve(training_file.id).status
print(f"File {training_file.id} ready after {time.time() - start_time:.2f} seconds.")
job = openai.fine_tuning.jobs.create(
training_file=training_file.id,
model="gpt-3.5-turbo",
)
status = openai.fine_tuning.jobs.retrieve(job.id).status
start_time = time.time()
while status != "succeeded":
print(f"Status=[{status}]... {time.time() - start_time:.2f}s", end="\r", flush=True)
time.sleep(5)
job = openai.fine_tuning.jobs.retrieve(job.id)
status = job.status
print(job.fine_tuned_model)
from langchain_openai import ChatOpenAI
model = ChatOpenAI(
model=job.fine_tuned_model,
temperature=1,
)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt = | ChatPromptTemplate.from_messages(
[
("system", "You are speaking to hare.") | langchain_core.prompts.ChatPromptTemplate.from_messages |
get_ipython().system('pip install gymnasium')
import tenacity
from langchain.output_parsers import RegexParser
from langchain.schema import (
HumanMessage,
SystemMessage,
)
class GymnasiumAgent:
@classmethod
def get_docs(cls, env):
return env.unwrapped.__doc__
def __init__(self, model, env):
self.model = model
self.env = env
self.docs = self.get_docs(env)
self.instructions = """
Your goal is to maximize your return, i.e. the sum of the rewards you receive.
I will give you an observation, reward, terminiation flag, truncation flag, and the return so far, formatted as:
Observation: <observation>
Reward: <reward>
Termination: <termination>
Truncation: <truncation>
Return: <sum_of_rewards>
You will respond with an action, formatted as:
Action: <action>
where you replace <action> with your actual action.
Do nothing else but return the action.
"""
self.action_parser = RegexParser(
regex=r"Action: (.*)", output_keys=["action"], default_output_key="action"
)
self.message_history = []
self.ret = 0
def random_action(self):
action = self.env.action_space.sample()
return action
def reset(self):
self.message_history = [
SystemMessage(content=self.docs),
SystemMessage(content=self.instructions),
]
def observe(self, obs, rew=0, term=False, trunc=False, info=None):
self.ret += rew
obs_message = f"""
Observation: {obs}
Reward: {rew}
Termination: {term}
Truncation: {trunc}
Return: {self.ret}
"""
self.message_history.append( | HumanMessage(content=obs_message) | langchain.schema.HumanMessage |
import re
from typing import Union
from langchain.agents import (
AgentExecutor,
AgentOutputParser,
LLMSingleActionAgent,
)
from langchain.chains import LLMChain
from langchain.prompts import StringPromptTemplate
from langchain_community.agent_toolkits import NLAToolkit
from langchain_community.tools.plugin import AIPlugin
from langchain_core.agents import AgentAction, AgentFinish
from langchain_openai import OpenAI
llm = OpenAI(temperature=0)
urls = [
"https://datasette.io/.well-known/ai-plugin.json",
"https://api.speak.com/.well-known/ai-plugin.json",
"https://www.wolframalpha.com/.well-known/ai-plugin.json",
"https://www.zapier.com/.well-known/ai-plugin.json",
"https://www.klarna.com/.well-known/ai-plugin.json",
"https://www.joinmilo.com/.well-known/ai-plugin.json",
"https://slack.com/.well-known/ai-plugin.json",
"https://schooldigger.com/.well-known/ai-plugin.json",
]
AI_PLUGINS = [AIPlugin.from_url(url) for url in urls]
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content=plugin.description_for_model,
metadata={"plugin_name": plugin.name_for_model},
)
for plugin in AI_PLUGINS
]
vector_store = FAISS.from_documents(docs, embeddings)
toolkits_dict = {
plugin.name_for_model: NLAToolkit.from_llm_and_ai_plugin(llm, plugin)
for plugin in AI_PLUGINS
}
retriever = vector_store.as_retriever()
def get_tools(query):
docs = retriever.get_relevant_documents(query)
tool_kits = [toolkits_dict[d.metadata["plugin_name"]] for d in docs]
tools = []
for tk in tool_kits:
tools.extend(tk.nla_tools)
return tools
tools = get_tools("What could I do today with my kiddo")
[t.name for t in tools]
tools = get_tools("what shirts can i buy?")
[t.name for t in tools]
template = """Answer the following questions as best you can, but speaking as a pirate might speak. You have access to the following tools:
{tools}
Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question
Begin! Remember to speak as a pirate when giving your final answer. Use lots of "Arg"s
Question: {input}
{agent_scratchpad}"""
from typing import Callable
class CustomPromptTemplate(StringPromptTemplate):
template: str
tools_getter: Callable
def format(self, **kwargs) -> str:
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
kwargs["agent_scratchpad"] = thoughts
tools = self.tools_getter(kwargs["input"])
kwargs["tools"] = "\n".join(
[f"{tool.name}: {tool.description}" for tool in tools]
)
kwargs["tool_names"] = ", ".join([tool.name for tool in tools])
return self.template.format(**kwargs)
prompt = CustomPromptTemplate(
template=template,
tools_getter=get_tools,
input_variables=["input", "intermediate_steps"],
)
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
if "Final Answer:" in llm_output:
return AgentFinish(
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
return AgentAction(
tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output
)
output_parser = CustomOutputParser()
llm = | OpenAI(temperature=0) | langchain_openai.OpenAI |
from langchain_community.document_loaders import AsyncHtmlLoader
urls = ["https://www.espn.com", "https://lilianweng.github.io/posts/2023-06-23-agent/"]
loader = | AsyncHtmlLoader(urls) | langchain_community.document_loaders.AsyncHtmlLoader |
get_ipython().run_line_magic('pip', 'install -U --quiet langchain langchain_community openai chromadb langchain-experimental')
get_ipython().run_line_magic('pip', 'install --quiet "unstructured[all-docs]" pypdf pillow pydantic lxml pillow matplotlib chromadb tiktoken')
import logging
import zipfile
import requests
logging.basicConfig(level=logging.INFO)
data_url = "https://storage.googleapis.com/benchmarks-artifacts/langchain-docs-benchmarking/cj.zip"
result = requests.get(data_url)
filename = "cj.zip"
with open(filename, "wb") as file:
file.write(result.content)
with zipfile.ZipFile(filename, "r") as zip_ref:
zip_ref.extractall()
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("./cj/cj.pdf")
docs = loader.load()
tables = []
texts = [d.page_content for d in docs]
len(texts)
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatVertexAI
from langchain_community.llms import VertexAI
from langchain_core.messages import AIMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda
def generate_text_summaries(texts, tables, summarize_texts=False):
"""
Summarize text elements
texts: List of str
tables: List of str
summarize_texts: Bool to summarize texts
"""
prompt_text = """You are an assistant tasked with summarizing tables and text for retrieval. \
These summaries will be embedded and used to retrieve the raw text or table elements. \
Give a concise summary of the table or text that is well optimized for retrieval. Table or text: {element} """
prompt = PromptTemplate.from_template(prompt_text)
empty_response = RunnableLambda(
lambda x: AIMessage(content="Error processing document")
)
model = VertexAI(
temperature=0, model_name="gemini-pro", max_output_tokens=1024
).with_fallbacks([empty_response])
summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()
text_summaries = []
table_summaries = []
if texts and summarize_texts:
text_summaries = summarize_chain.batch(texts, {"max_concurrency": 1})
elif texts:
text_summaries = texts
if tables:
table_summaries = summarize_chain.batch(tables, {"max_concurrency": 1})
return text_summaries, table_summaries
text_summaries, table_summaries = generate_text_summaries(
texts, tables, summarize_texts=True
)
len(text_summaries)
import base64
import os
from langchain_core.messages import HumanMessage
def encode_image(image_path):
"""Getting the base64 string"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def image_summarize(img_base64, prompt):
"""Make image summary"""
model = ChatVertexAI(model_name="gemini-pro-vision", max_output_tokens=1024)
msg = model(
[
HumanMessage(
content=[
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
},
]
)
]
)
return msg.content
def generate_img_summaries(path):
"""
Generate summaries and base64 encoded strings for images
path: Path to list of .jpg files extracted by Unstructured
"""
img_base64_list = []
image_summaries = []
prompt = """You are an assistant tasked with summarizing images for retrieval. \
These summaries will be embedded and used to retrieve the raw image. \
Give a concise summary of the image that is well optimized for retrieval."""
for img_file in sorted(os.listdir(path)):
if img_file.endswith(".jpg"):
img_path = os.path.join(path, img_file)
base64_image = encode_image(img_path)
img_base64_list.append(base64_image)
image_summaries.append(image_summarize(base64_image, prompt))
return img_base64_list, image_summaries
img_base64_list, image_summaries = generate_img_summaries("./cj")
len(image_summaries)
import uuid
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
from langchain_community.embeddings import VertexAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
def create_multi_vector_retriever(
vectorstore, text_summaries, texts, table_summaries, tables, image_summaries, images
):
"""
Create retriever that indexes summaries, but returns raw images or texts
"""
store = InMemoryStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
docstore=store,
id_key=id_key,
)
def add_documents(retriever, doc_summaries, doc_contents):
doc_ids = [str(uuid.uuid4()) for _ in doc_contents]
summary_docs = [
Document(page_content=s, metadata={id_key: doc_ids[i]})
for i, s in enumerate(doc_summaries)
]
retriever.vectorstore.add_documents(summary_docs)
retriever.docstore.mset(list(zip(doc_ids, doc_contents)))
if text_summaries:
add_documents(retriever, text_summaries, texts)
if table_summaries:
add_documents(retriever, table_summaries, tables)
if image_summaries:
add_documents(retriever, image_summaries, images)
return retriever
vectorstore = Chroma(
collection_name="mm_rag_cj_blog",
embedding_function= | VertexAIEmbeddings(model_name="textembedding-gecko@latest") | langchain_community.embeddings.VertexAIEmbeddings |
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
from langchain_openai import ChatOpenAI
api_wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=100)
tool = | WikipediaQueryRun(api_wrapper=api_wrapper) | langchain_community.tools.WikipediaQueryRun |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet promptlayer --upgrade')
import promptlayer # Don't forget this 🍰
from langchain.callbacks import PromptLayerCallbackHandler
from langchain.schema import (
HumanMessage,
)
from langchain_openai import ChatOpenAI
chat_llm = ChatOpenAI(
temperature=0,
callbacks=[PromptLayerCallbackHandler(pl_tags=["chatopenai"])],
)
llm_results = chat_llm(
[
HumanMessage(content="What comes after 1,2,3 ?"),
| HumanMessage(content="Tell me another joke?") | langchain.schema.HumanMessage |
from langchain_community.document_loaders import TomlLoader
loader = | TomlLoader("example_data/fake_rule.toml") | langchain_community.document_loaders.TomlLoader |
from langchain_community.document_loaders.blob_loaders.youtube_audio import (
YoutubeAudioLoader,
)
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers import (
OpenAIWhisperParser,
OpenAIWhisperParserLocal,
)
get_ipython().run_line_magic('pip', 'install --upgrade --quiet yt_dlp')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pydub')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet librosa')
local = False
urls = ["https://youtu.be/kCc8FmEb1nY", "https://youtu.be/VMj-3S1tku0"]
save_dir = "~/Downloads/YouTube"
if local:
loader = GenericLoader(
YoutubeAudioLoader(urls, save_dir), | OpenAIWhisperParserLocal() | langchain_community.document_loaders.parsers.OpenAIWhisperParserLocal |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet google-search-results')
import os
from langchain_community.tools.google_trends import GoogleTrendsQueryRun
from langchain_community.utilities.google_trends import GoogleTrendsAPIWrapper
os.environ["SERPAPI_API_KEY"] = ""
tool = GoogleTrendsQueryRun(api_wrapper= | GoogleTrendsAPIWrapper() | langchain_community.utilities.google_trends.GoogleTrendsAPIWrapper |
import os
import yaml
get_ipython().system('wget https://raw.githubusercontent.com/openai/openai-openapi/master/openapi.yaml -O openai_openapi.yaml')
get_ipython().system('wget https://www.klarna.com/us/shopping/public/openai/v0/api-docs -O klarna_openapi.yaml')
get_ipython().system('wget https://raw.githubusercontent.com/APIs-guru/openapi-directory/main/APIs/spotify.com/1.0.0/openapi.yaml -O spotify_openapi.yaml')
from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec
with open("openai_openapi.yaml") as f:
raw_openai_api_spec = yaml.load(f, Loader=yaml.Loader)
openai_api_spec = reduce_openapi_spec(raw_openai_api_spec)
with open("klarna_openapi.yaml") as f:
raw_klarna_api_spec = yaml.load(f, Loader=yaml.Loader)
klarna_api_spec = reduce_openapi_spec(raw_klarna_api_spec)
with open("spotify_openapi.yaml") as f:
raw_spotify_api_spec = yaml.load(f, Loader=yaml.Loader)
spotify_api_spec = reduce_openapi_spec(raw_spotify_api_spec)
import spotipy.util as util
from langchain.requests import RequestsWrapper
def construct_spotify_auth_headers(raw_spec: dict):
scopes = list(
raw_spec["components"]["securitySchemes"]["oauth_2_0"]["flows"][
"authorizationCode"
]["scopes"].keys()
)
access_token = util.prompt_for_user_token(scope=",".join(scopes))
return {"Authorization": f"Bearer {access_token}"}
headers = construct_spotify_auth_headers(raw_spotify_api_spec)
requests_wrapper = RequestsWrapper(headers=headers)
endpoints = [
(route, operation)
for route, operations in raw_spotify_api_spec["paths"].items()
for operation in operations
if operation in ["get", "post"]
]
len(endpoints)
import tiktoken
enc = tiktoken.encoding_for_model("gpt-4")
def count_tokens(s):
return len(enc.encode(s))
count_tokens(yaml.dump(raw_spotify_api_spec))
from langchain_community.agent_toolkits.openapi import planner
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-4", temperature=0.0)
spotify_agent = planner.create_openapi_agent(spotify_api_spec, requests_wrapper, llm)
user_query = (
"make me a playlist with the first song from kind of blue. call it machine blues."
)
spotify_agent.run(user_query)
user_query = "give me a song I'd like, make it blues-ey"
spotify_agent.run(user_query)
headers = {"Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"}
openai_requests_wrapper = RequestsWrapper(headers=headers)
llm = OpenAI(model_name="gpt-4", temperature=0.25)
openai_agent = planner.create_openapi_agent(
openai_api_spec, openai_requests_wrapper, llm
)
user_query = "generate a short piece of advice"
openai_agent.run(user_query)
from langchain.agents import create_openapi_agent
from langchain_community.agent_toolkits import OpenAPIToolkit
from langchain_community.tools.json.tool import JsonSpec
from langchain_openai import OpenAI
with open("openai_openapi.yaml") as f:
data = yaml.load(f, Loader=yaml.FullLoader)
json_spec = JsonSpec(dict_=data, max_value_length=4000)
openapi_toolkit = OpenAPIToolkit.from_llm(
| OpenAI(temperature=0) | langchain_openai.OpenAI |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet googlemaps')
import os
os.environ["GPLACES_API_KEY"] = ""
from langchain.tools import GooglePlacesTool
places = | GooglePlacesTool() | langchain.tools.GooglePlacesTool |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet slack_sdk > /dev/null')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet beautifulsoup4 > /dev/null # This is optional but is useful for parsing HTML messages')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet python-dotenv > /dev/null # This is for loading environmental variables from a .env file')
import dotenv
dotenv.load_dotenv()
from langchain_community.agent_toolkits import SlackToolkit
toolkit = SlackToolkit()
tools = toolkit.get_tools()
tools
from langchain import hub
from langchain.agents import AgentExecutor, create_react_agent
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0, model="gpt-4")
prompt = hub.pull("hwchase17/react")
agent = create_react_agent(
tools=toolkit.get_tools(),
llm=llm,
prompt=prompt,
)
agent_executor = | AgentExecutor(agent=agent, tools=tools, verbose=True) | langchain.agents.AgentExecutor |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet singlestoredb')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import SingleStoreDB
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = | CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | langchain_text_splitters.CharacterTextSplitter |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langsmith langchainhub --quiet')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai tiktoken pandas duckduckgo-search --quiet')
import os
from uuid import uuid4
unique_id = uuid4().hex[0:8]
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = f"Tracing Walkthrough - {unique_id}"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGCHAIN_API_KEY"] = "<YOUR-API-KEY>" # Update to your API key
os.environ["OPENAI_API_KEY"] = "<YOUR-OPENAI-API-KEY>"
from langsmith import Client
client = Client()
from langchain import hub
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad.openai_tools import (
format_to_openai_tool_messages,
)
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
from langchain_community.tools import DuckDuckGoSearchResults
from langchain_openai import ChatOpenAI
prompt = | hub.pull("wfh/langsmith-agent-prompt:5d466cbc") | langchain.hub.pull |
get_ipython().system('pip3 install clickhouse-sqlalchemy InstructorEmbedding sentence_transformers openai langchain-experimental')
import getpass
from os import environ
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.utilities import SQLDatabase
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
from langchain_openai import OpenAI
from sqlalchemy import MetaData, create_engine
MYSCALE_HOST = "msc-4a9e710a.us-east-1.aws.staging.myscale.cloud"
MYSCALE_PORT = 443
MYSCALE_USER = "chatdata"
MYSCALE_PASSWORD = "myscale_rocks"
OPENAI_API_KEY = getpass.getpass("OpenAI API Key:")
engine = create_engine(
f"clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/default?protocol=https"
)
metadata = MetaData(bind=engine)
environ["OPENAI_API_KEY"] = OPENAI_API_KEY
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_experimental.sql.vector_sql import VectorSQLOutputParser
output_parser = VectorSQLOutputParser.from_embeddings(
model=HuggingFaceInstructEmbeddings(
model_name="hkunlp/instructor-xl", model_kwargs={"device": "cpu"}
)
)
from langchain.callbacks import StdOutCallbackHandler
from langchain_community.utilities.sql_database import SQLDatabase
from langchain_experimental.sql.prompt import MYSCALE_PROMPT
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
from langchain_openai import OpenAI
chain = VectorSQLDatabaseChain(
llm_chain=LLMChain(
llm= | OpenAI(openai_api_key=OPENAI_API_KEY, temperature=0) | langchain_openai.OpenAI |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pgvector')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-openai')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet psycopg2-binary')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from dotenv import load_dotenv
load_dotenv()
from langchain.docstore.document import Document
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores.pgvector import PGVector
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
CONNECTION_STRING = "postgresql+psycopg2://harrisonchase@localhost:5432/test3"
COLLECTION_NAME = "state_of_the_union_test"
db = PGVector.from_documents(
embedding=embeddings,
documents=docs,
collection_name=COLLECTION_NAME,
connection_string=CONNECTION_STRING,
)
query = "What did the president say about Ketanji Brown Jackson"
docs_with_score = db.similarity_search_with_score(query)
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)
docs_with_score = db.max_marginal_relevance_search_with_score(query)
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)
store = PGVector(
collection_name=COLLECTION_NAME,
connection_string=CONNECTION_STRING,
embedding_function=embeddings,
)
store.add_documents([ | Document(page_content="foo") | langchain.docstore.document.Document |
with open("../docs/docs/modules/state_of_the_union.txt") as f:
state_of_the_union = f.read()
from langchain.chains import AnalyzeDocumentChain
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
from langchain.chains.question_answering import load_qa_chain
qa_chain = load_qa_chain(llm, chain_type="map_reduce")
qa_document_chain = | AnalyzeDocumentChain(combine_docs_chain=qa_chain) | langchain.chains.AnalyzeDocumentChain |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai duckduckgo-search')
from langchain.tools import DuckDuckGoSearchRun
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
search = DuckDuckGoSearchRun()
template = """turn the following user input into a search query for a search engine:
{input}"""
prompt = ChatPromptTemplate.from_template(template)
model = ChatOpenAI()
chain = prompt | model | | StrOutputParser() | langchain_core.output_parsers.StrOutputParser |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet tiktoken langchain-openai python-dotenv datasets langchain deeplake beautifulsoup4 html2text ragas')
ORG_ID = "..."
import getpass
import os
from langchain.chains import RetrievalQA
from langchain.vectorstores.deeplake import DeepLake
from langchain_openai import OpenAIChat, OpenAIEmbeddings
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter your OpenAI API token: ")
os.environ["ACTIVELOOP_TOKEN"] = getpass.getpass(
"Enter your ActiveLoop API token: "
) # Get your API token from https://app.activeloop.ai, click on your profile picture in the top right corner, and select "API Tokens"
token = os.getenv("ACTIVELOOP_TOKEN")
openai_embeddings = OpenAIEmbeddings()
db = DeepLake(
dataset_path=f"hub://{ORG_ID}/deeplake-docs-deepmemory", # org_id stands for your username or organization from activeloop
embedding=openai_embeddings,
runtime={"tensor_db": True},
token=token,
read_only=False,
)
from urllib.parse import urljoin
import requests
from bs4 import BeautifulSoup
def get_all_links(url):
response = requests.get(url)
if response.status_code != 200:
print(f"Failed to retrieve the page: {url}")
return []
soup = BeautifulSoup(response.content, "html.parser")
links = [
urljoin(url, a["href"]) for a in soup.find_all("a", href=True) if a["href"]
]
return links
base_url = "https://docs.deeplake.ai/en/latest/"
all_links = get_all_links(base_url)
from langchain.document_loaders import AsyncHtmlLoader
loader = AsyncHtmlLoader(all_links)
docs = loader.load()
from langchain.document_transformers import Html2TextTransformer
html2text = Html2TextTransformer()
docs_transformed = html2text.transform_documents(docs)
from langchain_text_splitters import RecursiveCharacterTextSplitter
chunk_size = 4096
docs_new = []
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
)
for doc in docs_transformed:
if len(doc.page_content) < chunk_size:
docs_new.append(doc)
else:
docs = text_splitter.create_documents([doc.page_content])
docs_new.extend(docs)
docs = db.add_documents(docs_new)
from typing import List
from langchain.chains.openai_functions import (
create_structured_output_chain,
)
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field
docs = db.vectorstore.dataset.text.data(fetch_chunks=True, aslist=True)["value"]
ids = db.vectorstore.dataset.id.data(fetch_chunks=True, aslist=True)["value"]
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
class Questions(BaseModel):
"""Identifying information about a person."""
question: str = Field(..., description="Questions about text")
prompt_msgs = [
SystemMessage(
content="You are a world class expert for generating questions based on provided context. \
You make sure the question can be answered by the text."
),
HumanMessagePromptTemplate.from_template(
"Use the given text to generate a question from the following input: {input}"
),
| HumanMessage(content="Tips: Make sure to answer in the correct format") | langchain_core.messages.HumanMessage |
import os
os.environ["EXA_API_KEY"] = "..."
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-exa')
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai')
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_exa import ExaSearchRetriever, TextContentsOptions
from langchain_openai import ChatOpenAI
retriever = ExaSearchRetriever(
k=5, text_contents_options=TextContentsOptions(max_length=200)
)
prompt = PromptTemplate.from_template(
"""Answer the following query based on the following context:
query: {query}
<context>
{context}
</context"""
)
llm = ChatOpenAI()
chain = (
RunnableParallel({"context": retriever, "query": RunnablePassthrough()})
| prompt
| llm
)
chain.invoke("When is the best time to visit japan?")
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain-exa')
from exa_py import Exa
from langchain.agents import tool
exa = Exa(api_key=os.environ["EXA_API_KEY"])
@tool
def search(query: str):
"""Search for a webpage based on the query."""
return exa.search(f"{query}", use_autoprompt=True, num_results=5)
@tool
def find_similar(url: str):
"""Search for webpages similar to a given URL.
The url passed in should be a URL returned from `search`.
"""
return exa.find_similar(url, num_results=5)
@tool
def get_contents(ids: list[str]):
"""Get the contents of a webpage.
The ids passed in should be a list of ids returned from `search`.
"""
return exa.get_contents(ids)
tools = [search, get_contents, find_similar]
from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
from langchain_core.messages import SystemMessage
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0)
system_message = SystemMessage(
content="You are a web researcher who answers user questions by looking up information on the internet and retrieving contents of helpful documents. Cite your sources."
)
agent_prompt = OpenAIFunctionsAgent.create_prompt(system_message)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=agent_prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor.run("Summarize for me a fascinating article about cats.")
from exa_py import Exa
from langchain.agents import tool
exa = Exa(api_key=os.environ["Exa_API_KEY"])
@tool
def search(query: str, include_domains=None, start_published_date=None):
"""Search for a webpage based on the query.
Set the optional include_domains (list[str]) parameter to restrict the search to a list of domains.
Set the optional start_published_date (str) parameter to restrict the search to documents published after the date (YYYY-MM-DD).
"""
return exa.search_and_contents(
f"{query}",
use_autoprompt=True,
num_results=5,
include_domains=include_domains,
start_published_date=start_published_date,
)
@tool
def find_similar(url: str):
"""Search for webpages similar to a given URL.
The url passed in should be a URL returned from `search`.
"""
return exa.find_similar_and_contents(url, num_results=5)
@tool
def get_contents(ids: list[str]):
"""Get the contents of a webpage.
The ids passed in should be a list of ids returned from `search`.
"""
return exa.get_contents(ids)
tools = [search, get_contents, find_similar]
from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
from langchain_core.messages import SystemMessage
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0, model="gpt-4")
system_message = SystemMessage(
content="You are a web researcher who answers user questions by looking up information on the internet and retrieving contents of helpful documents. Cite your sources."
)
agent_prompt = OpenAIFunctionsAgent.create_prompt(system_message)
agent = | OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=agent_prompt) | langchain.agents.OpenAIFunctionsAgent |
from langchain.prompts import FewShotPromptTemplate, PromptTemplate
from langchain.prompts.example_selector import (
MaxMarginalRelevanceExampleSelector,
SemanticSimilarityExampleSelector,
)
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
example_prompt = PromptTemplate(
input_variables=["input", "output"],
template="Input: {input}\nOutput: {output}",
)
examples = [
{"input": "happy", "output": "sad"},
{"input": "tall", "output": "short"},
{"input": "energetic", "output": "lethargic"},
{"input": "sunny", "output": "gloomy"},
{"input": "windy", "output": "calm"},
]
example_selector = MaxMarginalRelevanceExampleSelector.from_examples(
examples,
| OpenAIEmbeddings() | langchain_openai.OpenAIEmbeddings |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet lark weaviate-client')
from langchain_community.vectorstores import Weaviate
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={
"year": 1979,
"director": "Andrei Tarkovsky",
"genre": "science fiction",
"rating": 9.9,
},
),
]
vectorstore = Weaviate.from_documents(
docs, embeddings, weaviate_url="http://127.0.0.1:8080"
)
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = | OpenAI(temperature=0) | langchain_openai.OpenAI |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-community langchainhub gpt4all chromadb')
from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
from langchain_community.embeddings import GPT4AllEmbeddings
from langchain_community.vectorstores import Chroma
vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings())
question = "What are the approaches to Task Decomposition?"
docs = vectorstore.similarity_search(question)
len(docs)
docs[0]
get_ipython().run_line_magic('pip', 'install --upgrade --quiet llama-cpp-python')
get_ipython().system(' CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 /Users/rlm/miniforge3/envs/llama/bin/pip install -U llama-cpp-python --no-cache-dir')
from langchain_community.llms import LlamaCpp
n_gpu_layers = 1 # Metal set to 1 is enough.
n_batch = 512 # Should be between 1 and n_ctx, consider the amount of RAM of your Apple Silicon Chip.
llm = LlamaCpp(
model_path="/Users/rlm/Desktop/Code/llama.cpp/models/llama-2-13b-chat.ggufv3.q4_0.bin",
n_gpu_layers=n_gpu_layers,
n_batch=n_batch,
n_ctx=2048,
f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
verbose=True,
)
llm.invoke("Simulate a rap battle between Stephen Colbert and John Oliver")
from langchain_community.llms import GPT4All
gpt4all = GPT4All(
model="/Users/rlm/Desktop/Code/gpt4all/models/nous-hermes-13b.ggmlv3.q4_0.bin",
max_tokens=2048,
)
from langchain_community.llms.llamafile import Llamafile
llamafile = Llamafile()
llamafile.invoke("Here is my grandmother's beloved recipe for spaghetti and meatballs:")
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
prompt = PromptTemplate.from_template(
"Summarize the main themes in these retrieved docs: {docs}"
)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
chain = {"docs": format_docs} | prompt | llm | StrOutputParser()
question = "What are the approaches to Task Decomposition?"
docs = vectorstore.similarity_search(question)
chain.invoke(docs)
from langchain import hub
rag_prompt = hub.pull("rlm/rag-prompt")
rag_prompt.messages
from langchain_core.runnables import RunnablePassthrough, RunnablePick
chain = (
RunnablePassthrough.assign(context=RunnablePick("context") | format_docs)
| rag_prompt
| llm
| StrOutputParser()
)
chain.invoke({"context": docs, "question": question})
rag_prompt_llama = hub.pull("rlm/rag-prompt-llama")
rag_prompt_llama.messages
chain = (
RunnablePassthrough.assign(context=RunnablePick("context") | format_docs)
| rag_prompt_llama
| llm
| StrOutputParser()
)
chain.invoke({"context": docs, "question": question})
retriever = vectorstore.as_retriever()
qa_chain = (
{"context": retriever | format_docs, "question": | RunnablePassthrough() | langchain_core.runnables.RunnablePassthrough |
from langchain_community.chat_models import ChatDatabricks
from langchain_core.messages import HumanMessage
from mlflow.deployments import get_deploy_client
client = get_deploy_client("databricks")
secret = "secrets/<scope>/openai-api-key" # replace `<scope>` with your scope
name = "my-chat" # rename this if my-chat already exists
client.create_endpoint(
name=name,
config={
"served_entities": [
{
"name": "my-chat",
"external_model": {
"name": "gpt-4",
"provider": "openai",
"task": "llm/v1/chat",
"openai_config": {
"openai_api_key": "{{" + secret + "}}",
},
},
}
],
},
)
chat = ChatDatabricks(
target_uri="databricks",
endpoint=name,
temperature=0.1,
)
chat([HumanMessage(content="hello")])
from langchain_community.embeddings import DatabricksEmbeddings
embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
embeddings.embed_query("hello")[:3]
from langchain_community.llms import Databricks
llm = Databricks(endpoint_name="dolly")
llm("How are you?")
llm("How are you?", stop=["."])
import os
import dbutils
os.environ["DATABRICKS_TOKEN"] = dbutils.secrets.get("myworkspace", "api_token")
llm = | Databricks(host="myworkspace.cloud.databricks.com", endpoint_name="dolly") | langchain_community.llms.Databricks |
get_ipython().run_line_magic('pip', 'install --quiet pypdf chromadb tiktoken openai')
get_ipython().run_line_magic('pip', 'uninstall -y langchain-fireworks')
get_ipython().run_line_magic('pip', 'install --editable /mnt/disks/data/langchain/libs/partners/fireworks')
import fireworks
print(fireworks)
import fireworks.client
import requests
from langchain_community.document_loaders import PyPDFLoader
url = "https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf"
response = requests.get(url, stream=True)
file_name = "temp_file.pdf"
with open(file_name, "wb") as pdf:
pdf.write(response.content)
loader = PyPDFLoader(file_name)
data = loader.load()
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)
from langchain_community.vectorstores import Chroma
from langchain_fireworks.embeddings import FireworksEmbeddings
vectorstore = Chroma.from_documents(
documents=all_splits,
collection_name="rag-chroma",
embedding= | FireworksEmbeddings() | langchain_fireworks.embeddings.FireworksEmbeddings |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet promptlayer')
import os
import promptlayer
from langchain_community.llms import PromptLayerOpenAI
from getpass import getpass
PROMPTLAYER_API_KEY = getpass()
os.environ["PROMPTLAYER_API_KEY"] = PROMPTLAYER_API_KEY
from getpass import getpass
OPENAI_API_KEY = getpass()
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
llm = PromptLayerOpenAI(pl_tags=["langchain"])
llm("I am a cat and I want")
llm = | PromptLayerOpenAI(return_pl_id=True) | langchain_community.llms.PromptLayerOpenAI |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet langchain langchain-openai argilla')
import os
os.environ["ARGILLA_API_URL"] = "..."
os.environ["ARGILLA_API_KEY"] = "..."
os.environ["OPENAI_API_KEY"] = "..."
import argilla as rg
from packaging.version import parse as parse_version
if parse_version(rg.__version__) < parse_version("1.8.0"):
raise RuntimeError(
"`FeedbackDataset` is only available in Argilla v1.8.0 or higher, please "
"upgrade `argilla` as `pip install argilla --upgrade`."
)
dataset = rg.FeedbackDataset(
fields=[
rg.TextField(name="prompt"),
rg.TextField(name="response"),
],
questions=[
rg.RatingQuestion(
name="response-rating",
description="How would you rate the quality of the response?",
values=[1, 2, 3, 4, 5],
required=True,
),
rg.TextQuestion(
name="response-feedback",
description="What feedback do you have for the response?",
required=False,
),
],
guidelines="You're asked to rate the quality of the response and provide feedback.",
)
rg.init(
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
dataset.push_to_argilla("langchain-dataset")
from langchain.callbacks import ArgillaCallbackHandler
argilla_callback = ArgillaCallbackHandler(
dataset_name="langchain-dataset",
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
from langchain.callbacks import ArgillaCallbackHandler, StdOutCallbackHandler
from langchain_openai import OpenAI
argilla_callback = ArgillaCallbackHandler(
dataset_name="langchain-dataset",
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
callbacks = [StdOutCallbackHandler(), argilla_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks)
llm.generate(["Tell me a joke", "Tell me a poem"] * 3)
from langchain.callbacks import ArgillaCallbackHandler, StdOutCallbackHandler
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_openai import OpenAI
argilla_callback = ArgillaCallbackHandler(
dataset_name="langchain-dataset",
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
callbacks = [StdOutCallbackHandler(), argilla_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks)
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
test_prompts = [{"title": "Documentary about Bigfoot in Paris"}]
synopsis_chain.apply(test_prompts)
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.callbacks import ArgillaCallbackHandler, StdOutCallbackHandler
from langchain_openai import OpenAI
argilla_callback = ArgillaCallbackHandler(
dataset_name="langchain-dataset",
api_url=os.environ["ARGILLA_API_URL"],
api_key=os.environ["ARGILLA_API_KEY"],
)
callbacks = [ | StdOutCallbackHandler() | langchain.callbacks.StdOutCallbackHandler |
get_ipython().system(' pip install langchain unstructured[all-docs] pydantic lxml')
from typing import Any
from pydantic import BaseModel
from unstructured.partition.pdf import partition_pdf
path = "/Users/rlm/Desktop/Papers/LLaVA/"
raw_pdf_elements = partition_pdf(
filename=path + "LLaVA.pdf",
extract_images_in_pdf=True,
infer_table_structure=True,
chunking_strategy="by_title",
max_characters=4000,
new_after_n_chars=3800,
combine_text_under_n_chars=2000,
image_output_dir_path=path,
)
category_counts = {}
for element in raw_pdf_elements:
category = str(type(element))
if category in category_counts:
category_counts[category] += 1
else:
category_counts[category] = 1
unique_categories = set(category_counts.keys())
category_counts
class Element(BaseModel):
type: str
text: Any
categorized_elements = []
for element in raw_pdf_elements:
if "unstructured.documents.elements.Table" in str(type(element)):
categorized_elements.append(Element(type="table", text=str(element)))
elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
categorized_elements.append(Element(type="text", text=str(element)))
table_elements = [e for e in categorized_elements if e.type == "table"]
print(len(table_elements))
text_elements = [e for e in categorized_elements if e.type == "text"]
print(len(text_elements))
from langchain_community.chat_models import ChatOllama
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
prompt_text = """You are an assistant tasked with summarizing tables and text. \
Give a concise summary of the table or text. Table or text chunk: {element} """
prompt = | ChatPromptTemplate.from_template(prompt_text) | langchain_core.prompts.ChatPromptTemplate.from_template |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet vald-client-python')
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Vald
from langchain_text_splitters import CharacterTextSplitter
raw_documents = TextLoader("state_of_the_union.txt").load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
embeddings = HuggingFaceEmbeddings()
db = Vald.from_documents(documents, embeddings, host="localhost", port=8080)
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
docs[0].page_content
embedding_vector = embeddings.embed_query(query)
docs = db.similarity_search_by_vector(embedding_vector)
docs[0].page_content
docs_and_scores = db.similarity_search_with_score(query)
docs_and_scores[0]
retriever = db.as_retriever(search_type="mmr")
retriever.get_relevant_documents(query)
db.max_marginal_relevance_search(query, k=2, fetch_k=10)
import grpc
with open("test_root_cacert.crt", "rb") as root:
credentials = grpc.ssl_channel_credentials(root_certificates=root.read())
with open(".ztoken", "rb") as ztoken:
token = ztoken.read().strip()
metadata = [(b"athenz-role-auth", token)]
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Vald
from langchain_text_splitters import CharacterTextSplitter
raw_documents = TextLoader("state_of_the_union.txt").load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = text_splitter.split_documents(raw_documents)
embeddings = | HuggingFaceEmbeddings() | langchain_community.embeddings.HuggingFaceEmbeddings |
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
db = | FAISS.from_documents(docs, embeddings) | langchain_community.vectorstores.FAISS.from_documents |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet redis redisvl langchain-openai tiktoken lark')
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain_community.vectorstores import Redis
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
embeddings = | OpenAIEmbeddings() | langchain_openai.OpenAIEmbeddings |
get_ipython().run_line_magic('pip', 'install --upgrade --quiet pymysql')
get_ipython().system('pip install sqlalchemy')
get_ipython().system('pip install langchain')
from langchain.chains import RetrievalQA
from langchain_community.document_loaders import (
DirectoryLoader,
UnstructuredMarkdownLoader,
)
from langchain_community.vectorstores.apache_doris import (
ApacheDoris,
ApacheDorisSettings,
)
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain_text_splitters import TokenTextSplitter
update_vectordb = False
loader = DirectoryLoader(
"./docs", glob="**/*.md", loader_cls=UnstructuredMarkdownLoader
)
documents = loader.load()
text_splitter = TokenTextSplitter(chunk_size=400, chunk_overlap=50)
split_docs = text_splitter.split_documents(documents)
update_vectordb = True
def gen_apache_doris(update_vectordb, embeddings, settings):
if update_vectordb:
docsearch = ApacheDoris.from_documents(split_docs, embeddings, config=settings)
else:
docsearch = | ApacheDoris(embeddings, settings) | langchain_community.vectorstores.apache_doris.ApacheDoris |
import os
from getpass import getpass
os.environ["OPENAI_API_KEY"] = getpass()
activeloop_token = getpass("Activeloop Token:")
os.environ["ACTIVELOOP_TOKEN"] = activeloop_token
get_ipython().system('ls "../../../../../../libs"')
from langchain_community.document_loaders import TextLoader
root_dir = "../../../../../../libs"
docs = []
for dirpath, dirnames, filenames in os.walk(root_dir):
for file in filenames:
if file.endswith(".py") and "*venv/" not in dirpath:
try:
loader = TextLoader(os.path.join(dirpath, file), encoding="utf-8")
docs.extend(loader.load_and_split())
except Exception:
pass
print(f"{len(docs)}")
from langchain_text_splitters import CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(docs)
print(f"{len(texts)}")
from langchain_openai import OpenAIEmbeddings
embeddings = | OpenAIEmbeddings() | langchain_openai.OpenAIEmbeddings |
get_ipython().run_line_magic('pip', 'install -U --quiet langchain langchain_community openai chromadb langchain-experimental')
get_ipython().run_line_magic('pip', 'install --quiet "unstructured[all-docs]" pypdf pillow pydantic lxml pillow matplotlib chromadb tiktoken')
import logging
import zipfile
import requests
logging.basicConfig(level=logging.INFO)
data_url = "https://storage.googleapis.com/benchmarks-artifacts/langchain-docs-benchmarking/cj.zip"
result = requests.get(data_url)
filename = "cj.zip"
with open(filename, "wb") as file:
file.write(result.content)
with zipfile.ZipFile(filename, "r") as zip_ref:
zip_ref.extractall()
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("./cj/cj.pdf")
docs = loader.load()
tables = []
texts = [d.page_content for d in docs]
len(texts)
from langchain.prompts import PromptTemplate
from langchain_community.chat_models import ChatVertexAI
from langchain_community.llms import VertexAI
from langchain_core.messages import AIMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda
def generate_text_summaries(texts, tables, summarize_texts=False):
"""
Summarize text elements
texts: List of str
tables: List of str
summarize_texts: Bool to summarize texts
"""
prompt_text = """You are an assistant tasked with summarizing tables and text for retrieval. \
These summaries will be embedded and used to retrieve the raw text or table elements. \
Give a concise summary of the table or text that is well optimized for retrieval. Table or text: {element} """
prompt = PromptTemplate.from_template(prompt_text)
empty_response = RunnableLambda(
lambda x: AIMessage(content="Error processing document")
)
model = VertexAI(
temperature=0, model_name="gemini-pro", max_output_tokens=1024
).with_fallbacks([empty_response])
summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()
text_summaries = []
table_summaries = []
if texts and summarize_texts:
text_summaries = summarize_chain.batch(texts, {"max_concurrency": 1})
elif texts:
text_summaries = texts
if tables:
table_summaries = summarize_chain.batch(tables, {"max_concurrency": 1})
return text_summaries, table_summaries
text_summaries, table_summaries = generate_text_summaries(
texts, tables, summarize_texts=True
)
len(text_summaries)
import base64
import os
from langchain_core.messages import HumanMessage
def encode_image(image_path):
"""Getting the base64 string"""
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
def image_summarize(img_base64, prompt):
"""Make image summary"""
model = ChatVertexAI(model_name="gemini-pro-vision", max_output_tokens=1024)
msg = model(
[
HumanMessage(
content=[
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
},
]
)
]
)
return msg.content
def generate_img_summaries(path):
"""
Generate summaries and base64 encoded strings for images
path: Path to list of .jpg files extracted by Unstructured
"""
img_base64_list = []
image_summaries = []
prompt = """You are an assistant tasked with summarizing images for retrieval. \
These summaries will be embedded and used to retrieve the raw image. \
Give a concise summary of the image that is well optimized for retrieval."""
for img_file in sorted(os.listdir(path)):
if img_file.endswith(".jpg"):
img_path = os.path.join(path, img_file)
base64_image = encode_image(img_path)
img_base64_list.append(base64_image)
image_summaries.append(image_summarize(base64_image, prompt))
return img_base64_list, image_summaries
img_base64_list, image_summaries = generate_img_summaries("./cj")
len(image_summaries)
import uuid
from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
from langchain_community.embeddings import VertexAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
def create_multi_vector_retriever(
vectorstore, text_summaries, texts, table_summaries, tables, image_summaries, images
):
"""
Create retriever that indexes summaries, but returns raw images or texts
"""
store = InMemoryStore()
id_key = "doc_id"
retriever = MultiVectorRetriever(
vectorstore=vectorstore,
docstore=store,
id_key=id_key,
)
def add_documents(retriever, doc_summaries, doc_contents):
doc_ids = [str(uuid.uuid4()) for _ in doc_contents]
summary_docs = [
| Document(page_content=s, metadata={id_key: doc_ids[i]}) | langchain_core.documents.Document |