|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" |
|
|
|
import os |
|
|
|
import datasets |
|
from datasets import load_dataset |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction, |
|
title = "Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition", |
|
author = "Tjong Kim Sang, Erik F. and |
|
De Meulder, Fien", |
|
booktitle = "Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003", |
|
year = "2003", |
|
url = "https://www.aclweb.org/anthology/W03-0419", |
|
pages = "142--147", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on |
|
four types of named entities: persons, locations, organizations and names of miscellaneous entities that do |
|
not belong to the previous three groups. |
|
|
|
The CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on |
|
a separate line and there is an empty line after each sentence. The first item on each line is a word, the second |
|
a part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags |
|
and the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only |
|
if two phrases of the same type immediately follow each other, the first word of the second phrase will have tag |
|
B-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2 |
|
tagging scheme, whereas the original dataset uses IOB1. |
|
|
|
For more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419 |
|
""" |
|
|
|
_URL = "https://github.com/lunesco/conll2003/raw/20d0fa111d9b304fc643f688fe58a0e354e9fce8/conll2003.zip" |
|
_TRAINING_FILE = "train.txt" |
|
_DEV_FILE = "valid.txt" |
|
_TEST_FILE = "test.txt" |
|
|
|
|
|
class Conll2003Config(datasets.BuilderConfig): |
|
"""BuilderConfig for Conll2003""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig forConll2003. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Conll2003Config, self).__init__(**kwargs) |
|
|
|
|
|
class Conll2003(datasets.GeneratorBasedBuilder): |
|
"""Conll2003 dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
Conll2003Config(name="conll2003", version=datasets.Version("1.0.0"), description="Conll2003 dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"pos_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=['VAFIN', 'PPOSAT', 'NN', 'APPR', 'ADV', 'VVINF', '$.', 'NE', |
|
'CARD', 'TRUNC', 'XY', 'ADJA', 'ART', 'VVFIN', 'PPER', 'APPRART', |
|
'$[', 'VVPP', 'KON', '$,', 'PTKVZ', 'ADJD', 'PIAT', 'PRELS', |
|
'PTKNEG', 'VAINF', 'VMFIN', 'PTKZU', 'PROAV', 'PIDAT', 'PDS', |
|
'PWAV', 'PWS', 'KOUS', 'PIS', 'PRF', 'FM', 'ITJ', 'PTKANT', 'PDAT', |
|
'VVIZU', 'PWAT', 'APZR', 'KOKOM', 'VVIMP', 'PTKA', 'KOUI', 'APPO', |
|
'VAPP', 'VMINF'] |
|
) |
|
), |
|
"chunk_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=['I-VA', 'I-PP', 'I-NN', 'I-AP', 'I-AD', 'I-VV', 'I-$.', 'I-NE', |
|
'-X-', 'I-CA', 'I-TR', 'I-XY', 'I-AR', 'I-$[', 'I-KO', 'I-$,', |
|
'I-PT', 'I-PI', 'I-PR', 'I-VM', 'I-PD', 'I-PW', 'I-FM', 'I-IT'] |
|
) |
|
), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=['O', 'B-organization-company', 'B-location-route', |
|
'B-trigger', 'B-location-stop', 'B-date', 'B-location-city', |
|
'B-event-cause', 'I-event-cause', 'B-time', 'I-time', 'B-number', |
|
'B-organization', 'I-organization', 'B-location-street', |
|
'I-trigger', 'B-location', 'I-location', 'I-location-city', |
|
'I-organization-company', 'B-duration', 'I-duration', |
|
'I-location-street', 'I-location-stop', 'I-location-route', |
|
'B-person', 'I-date', 'B-set', 'B-money', 'I-person', 'I-money', |
|
'B-distance', 'I-distance', 'I-number', 'B-disaster-type', |
|
'B-org-position', 'I-org-position', 'I-set', 'B-percent', |
|
'I-percent', 'I-disaster-type'] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://www.aclweb.org/anthology/W03-0419/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
data_files = { |
|
"train": os.path.join(downloaded_file, _TRAINING_FILE), |
|
"dev": os.path.join(downloaded_file, _DEV_FILE), |
|
"test": os.path.join(downloaded_file, _TEST_FILE), |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
pos_tags = [] |
|
chunk_tags = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"pos_tags": pos_tags, |
|
"chunk_tags": chunk_tags, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
pos_tags = [] |
|
chunk_tags = [] |
|
ner_tags = [] |
|
else: |
|
|
|
splits = line.split(" ") |
|
tokens.append(splits[0]) |
|
pos_tags.append(splits[1]) |
|
chunk_tags.append(splits[2]) |
|
ner_tags.append(splits[3].rstrip()) |
|
|
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"pos_tags": pos_tags, |
|
"chunk_tags": chunk_tags, |
|
"ner_tags": ner_tags, |
|
} |
|
|