Datasets:

Modalities:
Text
Formats:
json
Languages:
French
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,286 Bytes
93af9ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from collections import Counter
import json
import re

import datasets
import pandas as pd
from huggingface_hub import create_repo, upload_file, hf_hub_download
from huggingface_hub.utils._errors import HfHubHTTPError

########################
# Cleanup queries data #
########################

# load dataset
dl_path = hf_hub_download(
    repo_id="antoinelb7/alloprof",
    filename="data/alloprof.csv",
    repo_type="dataset",
    revision="0faa90fee1ad1a6e3e461d7be49abf71488e6687"
    )
alloprof_queries = pd.read_csv(dl_path)

# remove non-queries
alloprof_queries = alloprof_queries[alloprof_queries["is_query"]]

# remove nans in text
alloprof_queries = alloprof_queries[~alloprof_queries["text"].isna()]

# most data flagged as language "en" are actually french. We je remove english ones
# by matching specifig words
alloprof_queries = alloprof_queries[
    ~(
        (alloprof_queries["text"].str.lower().str.startswith("hi"))
        | (alloprof_queries["text"].str.lower().str.startswith("hello"))
        | (alloprof_queries["text"].str.lower().str.startswith("how"))
        | (alloprof_queries["text"].str.lower().str.startswith("i "))
    )
]

# only keep queries with french relevant documents
alloprof_queries = alloprof_queries[
    (~alloprof_queries["relevant"].isna()) & (alloprof_queries["relevant"].str.endswith("-fr"))
]

# remove queries with url in text because question relies on picture
alloprof_queries = alloprof_queries[~alloprof_queries["text"].str.contains("https://www.alloprof.qc.ca")]


# split multiple relevant docs and remove -fr suffix on id
def parse_relevant_ids(row):
    row = row.split(";")
    row = [r[:-3] for r in row if r.endswith("-fr")]
    return row


alloprof_queries["relevant"] = alloprof_queries["relevant"].apply(parse_relevant_ids)


# Parse the answer
def parse_answer(row):
    try:
        row = json.loads(row)
        text = []
        for i in row:
            if type(i["insert"]) is not dict:
                text.append(i["insert"])
        text = "".join(text)
    except:
        text = row
    return text.replace(" ", " ").replace("\u200b", "").replace("\xa0", "")


alloprof_queries["answer"] = alloprof_queries["answer"].apply(parse_answer)

# only keep useful columns
alloprof_queries = alloprof_queries[["id", "text", "answer", "relevant", "subject"]]

# remove duplicate queries (same text)
alloprof_queries = alloprof_queries.drop_duplicates(subset=["text"], keep="first")

##########################
# Cleanup documents data #
##########################

# load dataset
dl_path = hf_hub_download(
    repo_id="antoinelb7/alloprof",
    filename="data/pages/page-content-fr.json",
    repo_type="dataset",
    revision="0faa90fee1ad1a6e3e461d7be49abf71488e6687"
    )
alloprof_docs = pd.read_json(dl_path)

# Remove Nans in data
alloprof_docs = alloprof_docs[~alloprof_docs["data"].isna()]

# parse dataset
def parse_row(row):
    return [row["file"]["uuid"], row["file"]["title"], row["file"]["topic"]]


def get_text(row):
    text = []
    for s in row["file"]["sections"]:
        for m in s["modules"]:
            if m["type"] == "blocSpecial":
                if m["subtype"] in ["definition", "exemple"]:
                    for sm in m["submodules"]:
                        if sm["type"] == "text":
                            text.append(sm["text"])
            elif m["type"] == "text":
                text.append(m["text"])
    text = " ".join(text)
    text = re.sub("<[^<]+?>", "", text)
    text = text.replace("&nbsp;", " ").replace("\u200b", "")
    text = re.sub("\s{2,}", " ", text)

    return text


parsed_df = alloprof_docs["data"].apply(parse_row)
alloprof_docs[["uuid", "title", "topic"]] = parsed_df.tolist()
alloprof_docs["text"] = alloprof_docs["data"].apply(get_text)

# remove unnecessary columns
alloprof_docs = alloprof_docs[["uuid", "title", "topic", "text"]]

################
# Post Process #
################

# check that all relevant docs mentioned in queries are in docs dataset
relevants = alloprof_queries["relevant"].tolist()
relevants = {i for j in relevants for i in j}  # flatten list and get uniques
assert relevants.issubset(
    alloprof_docs["uuid"].tolist()
), "Some relevant document of queries are not present in the corpus"

# convert to Dataset
alloprof_queries = datasets.Dataset.from_pandas(alloprof_queries)
alloprof_docs = datasets.Dataset.from_pandas(alloprof_docs)

# identify duplicate documents
# (duplicates are actually error documents,
# such as "fiche en construction", " ", ...
duplicate_docs = Counter(alloprof_docs["text"])
duplicate_docs = {k:v for k,v in duplicate_docs.items() if v > 1}

# for each text that is in duplicate...
for dup_text in duplicate_docs:
    # ...get the ids of docs that have that text
    duplicate_ids = [d["uuid"] for d in alloprof_docs if d["text"] == dup_text]
    # ...delete all the documents that have these ids from the corpus dataset
    alloprof_docs = alloprof_docs.filter(lambda x: x["uuid"] not in duplicate_ids)
    # ...delete them from the relevant documents in queries
    alloprof_queries = alloprof_queries.map(lambda x: {"relevant": [i for i in x["relevant"] if i not in duplicate_ids]})

# remove the queries that have no remaining relevant documents
alloprof_queries = alloprof_queries.filter(lambda x: len(x["relevant"]) > 0)

# split queries into train-test
alloprof_queries = alloprof_queries.train_test_split(test_size=.2)

####################
# Upload to HF Hub #
####################

# create HF repo
repo_id = "lyon-nlp/alloprof"
try:
    create_repo(repo_id, repo_type="dataset")
except HfHubHTTPError as e:
    print("HF repo already exist")

# save datasets as json
alloprof_queries["train"].to_pandas().to_json("queries-train.json", orient="records")
alloprof_queries["test"].to_pandas().to_json("queries-test.json", orient="records")
alloprof_docs.to_pandas().to_json("documents.json", orient="records")

upload_file(path_or_fileobj="queries-train.json", path_in_repo="queries-train.json", repo_id=repo_id, repo_type="dataset")
upload_file(path_or_fileobj="queries-test.json", path_in_repo="queries-test.json", repo_id=repo_id, repo_type="dataset")
upload_file(path_or_fileobj="documents.json", path_in_repo="documents.json", repo_id=repo_id, repo_type="dataset")