|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Alloprof: a new French question-answer education dataset and its use in an information retrieval case study""" |
|
import json |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@misc{lef23, |
|
doi = {10.48550/ARXIV.2302.07738}, |
|
url = {https://arxiv.org/abs/2302.07738}, |
|
author = {Lefebvre-Brossard, Antoine and Gazaille, Stephane and Desmarais, Michel C.}, |
|
keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Alloprof: a new French question-answer education dataset and its use in an information retrieval case study}, |
|
publisher = {arXiv}, |
|
year = {2023}, |
|
copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This is a re-edit from the Alloprof dataset (which can be found here : https://huggingface.co/datasets/antoinelb7/alloprof). |
|
|
|
For more information about the data source and the features, please refer to the original dataset card made by the authors, along with their paper available here : https://arxiv.org/abs/2302.07738 |
|
|
|
This re-edition of the dataset has been made for easier usage in the MTEB benchmarking pipeline. (https://huggingface.co/spaces/mteb/leaderboard). It is a filtered version of the original dataset, in a more ready-to-use format. |
|
""" |
|
|
|
_SPLITS = ["documents", "queries"] |
|
_HOMEPAGE = "https://huggingface.co/datasets/antoinelb7/alloprof" |
|
_LICENSE = "Creative Commons Attribution Non Commercial Share Alike 4.0 International" |
|
_URLS = { |
|
split: f"https://huggingface.co/datasets/lyon-nlp/alloprof/resolve/main/{split}.json"\ |
|
for split in _SPLITS |
|
} |
|
|
|
class Alloprof(datasets.GeneratorBasedBuilder): |
|
"""Alloprof: a new French question-answer education dataset and its use in an information retrieval case study""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="documents", version=VERSION, description="Corpus of documents from the Alloprof website"), |
|
datasets.BuilderConfig(name="queries", version=VERSION, description="Corpus of queries from students"), |
|
] |
|
|
|
|
|
|
|
DEFAULT_CONFIG_NAME = "documents" |
|
|
|
def _info(self): |
|
if self.config.name == "documents": |
|
features = { |
|
"uuid": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"topic": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
elif self.config.name == "queries": |
|
features = { |
|
"id": datasets.Value("int32"), |
|
"text": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"relevant": datasets.Sequence(datasets.Value("string")), |
|
"subject": datasets.Value("string"), |
|
} |
|
else: |
|
raise ValueError(f"Please specify a valid config name : {_SPLITS}") |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(features), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.name == "documents": |
|
dl_path = dl_manager.download_and_extract(_URLS["documents"]) |
|
return [datasets.SplitGenerator(name="documents", gen_kwargs={"filepath": dl_path})] |
|
elif self.config.name == "queries": |
|
dl_paths = dl_manager.download_and_extract(_URLS["queries"]) |
|
return [datasets.SplitGenerator(name="queries", gen_kwargs={"filepath": dl_paths})] |
|
else: |
|
raise ValueError(f"Please specify a valid config name : {_SPLITS}") |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
if self.config.name in ["documents", "queries"]: |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for key, row in enumerate(data): |
|
if self.config.name == "documents": |
|
features = { |
|
"uuid": row["uuid"], |
|
"title": row["title"], |
|
"topic": row["topic"], |
|
"text": row["text"], |
|
} |
|
elif self.config.name == "queries": |
|
features = { |
|
"id": row["id"], |
|
"text": row["text"], |
|
"answer": row["answer"], |
|
"relevant": row["relevant"], |
|
"subject": row["subject"], |
|
} |
|
else: |
|
raise ValueError(f"Please specify a valid config name : {_SPLITS}") |
|
yield key, features |
|
else: |
|
raise ValueError(f"Please specify a valid config name : {_SPLITS}") |
|
|