antoinelouis
commited on
Delete bsard.py
Browse files
bsard.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""BSARD: A Statutory Article Retrieval Dataset in French"""
|
15 |
-
|
16 |
-
import csv
|
17 |
-
import json
|
18 |
-
import datasets
|
19 |
-
|
20 |
-
|
21 |
-
_CITATION = """\
|
22 |
-
@inproceedings{louis-spanakis-2022-statutory,
|
23 |
-
title = "A Statutory Article Retrieval Dataset in {F}rench",
|
24 |
-
author = "Louis, Antoine and Spanakis, Gerasimos",
|
25 |
-
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
26 |
-
month = may,
|
27 |
-
year = "2022",
|
28 |
-
address = "Dublin, Ireland",
|
29 |
-
publisher = "Association for Computational Linguistics",
|
30 |
-
url = "https://aclanthology.org/2022.acl-long.468",
|
31 |
-
doi = "10.18653/v1/2022.acl-long.468",
|
32 |
-
pages = "6789--6803",
|
33 |
-
}
|
34 |
-
"""
|
35 |
-
_DESCRIPTION = """\
|
36 |
-
The Belgian Statutory Article Retrieval Dataset (BSARD) is a French native dataset for studying legal information retrieval.
|
37 |
-
BSARD consists of more than 22,600 statutory articles from Belgian law and about 1,100 legal questions posed by Belgian citizens
|
38 |
-
and labeled by experienced jurists with relevant articles from the corpus.
|
39 |
-
"""
|
40 |
-
_HOMEPAGE = "https://github.com/maastrichtlawtech/bsard"
|
41 |
-
_LICENSE = "CC BY-NC-SA 4.0"
|
42 |
-
_URLS = {
|
43 |
-
"corpus": "https://huggingface.co/datasets/maastrichtlawtech/bsard/resolve/main/articles.csv",
|
44 |
-
"test-questions": "https://huggingface.co/datasets/maastrichtlawtech/bsard/resolve/main/questions_test.csv",
|
45 |
-
"train-questions": "https://huggingface.co/datasets/maastrichtlawtech/bsard/resolve/main/questions_train.csv",
|
46 |
-
"synthetic-questions": "https://huggingface.co/datasets/maastrichtlawtech/bsard/resolve/main/questions_synthetic.csv",
|
47 |
-
"train-negatives": "https://huggingface.co/datasets/maastrichtlawtech/bsard/resolve/main/negatives/bm25_negatives_train.json",
|
48 |
-
"synthetic-negatives": "https://huggingface.co/datasets/maastrichtlawtech/bsard/resolve/main/negatives/bm25_negatives_synthetic.json",
|
49 |
-
}
|
50 |
-
|
51 |
-
|
52 |
-
class BSARD(datasets.GeneratorBasedBuilder):
|
53 |
-
"""BSARD: A Statutory Article Retrieval Dataset in French"""
|
54 |
-
|
55 |
-
VERSION = datasets.Version("1.0.0")
|
56 |
-
BUILDER_CONFIGS = [
|
57 |
-
datasets.BuilderConfig(name="corpus", version=VERSION, description="Knowledge corpus of statutory articles"),
|
58 |
-
datasets.BuilderConfig(name="questions", version=VERSION, description="Questions labeled with relevant articles"),
|
59 |
-
datasets.BuilderConfig(name="negatives", version=VERSION, description="Questions labeled with (hard to tell) irrelevant articles"),
|
60 |
-
]
|
61 |
-
DEFAULT_CONFIG_NAME = "questions"
|
62 |
-
|
63 |
-
def _info(self):
|
64 |
-
if self.config.name == "corpus":
|
65 |
-
features = {
|
66 |
-
"id": datasets.Value("int32"),
|
67 |
-
"article": datasets.Value("string"),
|
68 |
-
"reference": datasets.Value("string"),
|
69 |
-
"law_type": datasets.Value("string"),
|
70 |
-
"description": datasets.Value("string"),
|
71 |
-
"code": datasets.Value("string"),
|
72 |
-
"book": datasets.Value("string"),
|
73 |
-
"part": datasets.Value("string"),
|
74 |
-
"act": datasets.Value("string"),
|
75 |
-
"chapter": datasets.Value("string"),
|
76 |
-
"section": datasets.Value("string"),
|
77 |
-
"subsection": datasets.Value("string"),
|
78 |
-
}
|
79 |
-
elif self.config.name == "questions":
|
80 |
-
features = {
|
81 |
-
"id": datasets.Value("int32"),
|
82 |
-
"question": datasets.Value("string"),
|
83 |
-
"article_ids": datasets.Sequence(datasets.Value("int32")),
|
84 |
-
"category": datasets.Value("string"),
|
85 |
-
"subcategory": datasets.Value("string"),
|
86 |
-
"extra_description": datasets.Value("string"),
|
87 |
-
}
|
88 |
-
elif self.config.name == "negatives":
|
89 |
-
features = {
|
90 |
-
"question_id": datasets.Value("int32"),
|
91 |
-
"article_ids": datasets.Sequence(datasets.Value("int32")),
|
92 |
-
}
|
93 |
-
else:
|
94 |
-
raise ValueError(f"Unknown config name {self.config.name}")
|
95 |
-
return datasets.DatasetInfo(
|
96 |
-
description=_DESCRIPTION,
|
97 |
-
features=datasets.Features(features),
|
98 |
-
supervised_keys=None,
|
99 |
-
homepage=_HOMEPAGE,
|
100 |
-
license=_LICENSE,
|
101 |
-
citation=_CITATION,
|
102 |
-
)
|
103 |
-
|
104 |
-
def _split_generators(self, dl_manager):
|
105 |
-
if self.config.name == "corpus":
|
106 |
-
dl_path = dl_manager.download_and_extract(_URLS["corpus"])
|
107 |
-
return [datasets.SplitGenerator(name="corpus", gen_kwargs={"filepath": dl_path})]
|
108 |
-
elif self.config.name == "questions":
|
109 |
-
splits = ["train-questions", "test-questions", "synthetic-questions"]
|
110 |
-
dl_paths = dl_manager.download_and_extract({split: _URLS[split] for split in splits})
|
111 |
-
return [
|
112 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": dl_paths["train-questions"], "split": "train"}),
|
113 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": dl_paths["test-questions"], "split": "test"}),
|
114 |
-
datasets.SplitGenerator(name="synthetic", gen_kwargs={"filepath": dl_paths["synthetic-questions"], "split": "synthetic"}),
|
115 |
-
]
|
116 |
-
elif self.config.name == "negatives":
|
117 |
-
splits = ["train-negatives", "synthetic-negatives"]
|
118 |
-
dl_paths = dl_manager.download_and_extract({split: _URLS[split] for split in splits})
|
119 |
-
return [
|
120 |
-
datasets.SplitGenerator(name="train", gen_kwargs={"filepath": dl_paths["train-negatives"], "split": "train"}),
|
121 |
-
datasets.SplitGenerator(name="synthetic", gen_kwargs={"filepath": dl_paths["synthetic-negatives"], "split": "synthetic"}),
|
122 |
-
]
|
123 |
-
else:
|
124 |
-
raise ValueError(f"Unknown config name {self.config.name}")
|
125 |
-
|
126 |
-
|
127 |
-
def _generate_examples(self, filepath, split=None):
|
128 |
-
if self.config.name in ["corpus", "questions"]:
|
129 |
-
with open(filepath, encoding="utf-8") as f:
|
130 |
-
data = csv.DictReader(f)
|
131 |
-
for key, row in enumerate(data):
|
132 |
-
if self.config.name == "corpus":
|
133 |
-
features = {
|
134 |
-
"id": int(row["id"]),
|
135 |
-
"article": row["article"],
|
136 |
-
"reference": row["reference"],
|
137 |
-
"law_type": row["law_type"],
|
138 |
-
"description": row["description"],
|
139 |
-
"code": row["code"],
|
140 |
-
"book": row["book"],
|
141 |
-
"part": row["part"],
|
142 |
-
"act": row["act"],
|
143 |
-
"chapter": row["chapter"],
|
144 |
-
"section": row["section"],
|
145 |
-
"subsection": row["subsection"],
|
146 |
-
}
|
147 |
-
elif self.config.name == "questions":
|
148 |
-
features = {
|
149 |
-
"id": int(row["id"]),
|
150 |
-
"question": row["question"],
|
151 |
-
"article_ids": [int(num) for num in row["article_ids"].split(",")],
|
152 |
-
"category": "" if split == "synthetic" else row["category"],
|
153 |
-
"subcategory": "" if split == "synthetic" else row["subcategory"],
|
154 |
-
"extra_description": "" if split == "synthetic" else row["extra_description"],
|
155 |
-
}
|
156 |
-
else:
|
157 |
-
raise ValueError(f"Unknown config name {self.config.name}")
|
158 |
-
yield key, features
|
159 |
-
elif self.config.name == "negatives":
|
160 |
-
with open(filepath, encoding="utf-8") as f:
|
161 |
-
data = json.load(f)
|
162 |
-
for key, (qid, article_ids) in enumerate(data.items()):
|
163 |
-
features = {
|
164 |
-
"question_id": int(qid),
|
165 |
-
"article_ids": article_ids,
|
166 |
-
}
|
167 |
-
yield key, features
|
168 |
-
else:
|
169 |
-
raise ValueError(f"Unknown config name {self.config.name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|