File size: 12,608 Bytes
667f81c bb0a777 667f81c bb0a777 667f81c bb0a777 667f81c bb0a777 667f81c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""TriviaQA: A Reading Comprehension Dataset."""
from __future__ import absolute_import, division, print_function
import glob
import json
import os
import six
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """
@article{2017arXivtriviaqa,
author = {{Joshi}, Mandar and {Choi}, Eunsol and {Weld},
Daniel and {Zettlemoyer}, Luke},
title = "{triviaqa: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension}",
journal = {arXiv e-prints},
year = 2017,
eid = {arXiv:1705.03551},
pages = {arXiv:1705.03551},
archivePrefix = {arXiv},
eprint = {1705.03551},
}
"""
_DOWNLOAD_URL_TMPL = "http://nlp.cs.washington.edu/triviaqa/data/triviaqa-{}.tar.gz"
_TRAIN_FILE_FORMAT = "*-train.json"
_VALIDATION_FILE_FORMAT = "*-dev.json"
_TEST_FILE_FORMAT = "*test-without-answers.json"
_WEB_EVIDENCE_DIR = "evidence/web"
_WIKI_EVIDENCE_DIR = "evidence/wikipedia"
_DESCRIPTION = """\
TriviaqQA is a reading comprehension dataset containing over 650K
question-answer-evidence triples. TriviaqQA includes 95K question-answer
pairs authored by trivia enthusiasts and independently gathered evidence
documents, six per question on average, that provide high quality distant
supervision for answering the questions.
"""
_RC_DESCRIPTION = """\
Question-answer pairs where all documents for a given question contain the
answer string(s).
"""
_UNFILTERED_DESCRIPTION = """\
110k question-answer pairs for open domain QA where not all documents for a
given question contain the answer string(s). This makes the unfiltered dataset
more appropriate for IR-style QA.
"""
_CONTEXT_ADDENDUM = "Includes context from Wikipedia and search results."
def _web_evidence_dir(tmp_dir):
return sorted(glob.glob(os.path.join(tmp_dir, _WEB_EVIDENCE_DIR)))
def _wiki_evidence_dir(tmp_dir):
return sorted(glob.glob(os.path.join(tmp_dir, _WIKI_EVIDENCE_DIR)))
class TriviaQaConfig(datasets.BuilderConfig):
"""BuilderConfig for TriviaQA."""
def __init__(self, unfiltered=False, exclude_context=False, **kwargs):
"""BuilderConfig for TriviaQA.
Args:
unfiltered: bool, whether to use the unfiltered version of the dataset,
intended for open-domain QA.
exclude_context: bool, whether to exclude Wikipedia and search context for
reduced size.
**kwargs: keyword arguments forwarded to super.
"""
name = "unfiltered" if unfiltered else "rc"
if exclude_context:
name += ".nocontext"
description = _UNFILTERED_DESCRIPTION if unfiltered else _RC_DESCRIPTION
if not exclude_context:
description += _CONTEXT_ADDENDUM
super(TriviaQaConfig, self).__init__(
name=name, description=description, version=datasets.Version("1.1.0"), **kwargs
)
self.unfiltered = unfiltered
self.exclude_context = exclude_context
class TriviaQa(datasets.GeneratorBasedBuilder):
"""TriviaQA is a reading comprehension dataset.
It containss over 650K question-answer-evidence triples.
"""
BUILDER_CONFIGS = [
TriviaQaConfig(unfiltered=False, exclude_context=False), # rc
TriviaQaConfig(unfiltered=False, exclude_context=True), # rc.nocontext
TriviaQaConfig(unfiltered=True, exclude_context=False), # unfiltered
TriviaQaConfig(unfiltered=True, exclude_context=True),
# unfilered.nocontext
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"question": datasets.Value("string"),
"question_id": datasets.Value("string"),
"question_source": datasets.Value("string"),
"entity_pages": datasets.features.Sequence(
{
"doc_source": datasets.Value("string"),
"filename": datasets.Value("string"),
"title": datasets.Value("string"),
"wiki_context": datasets.Value("string"),
}
),
"search_results": datasets.features.Sequence(
{
"description": datasets.Value("string"),
"filename": datasets.Value("string"),
"rank": datasets.Value("int32"),
"title": datasets.Value("string"),
"url": datasets.Value("string"),
"search_context": datasets.Value("string"),
}
),
"answer": dict(
{
"aliases": datasets.features.Sequence(datasets.Value("string")),
"normalized_aliases": datasets.features.Sequence(datasets.Value("string")),
"matched_wiki_entity_name": datasets.Value("string"),
"normalized_matched_wiki_entity_name": datasets.Value("string"),
"normalized_value": datasets.Value("string"),
"type": datasets.Value("string"),
"value": datasets.Value("string"),
}
),
}
),
supervised_keys=None,
homepage="http://nlp.cs.washington.edu/triviaqa/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
cfg = self.config
download_urls = dict()
if not (cfg.unfiltered and cfg.exclude_context):
download_urls["rc"] = _DOWNLOAD_URL_TMPL.format("rc")
if cfg.unfiltered:
download_urls["unfiltered"] = _DOWNLOAD_URL_TMPL.format("unfiltered")
file_paths = dl_manager.download_and_extract(download_urls)
qa_dir = (
os.path.join(file_paths["unfiltered"], "triviaqa-unfiltered")
if cfg.unfiltered
else os.path.join(file_paths["rc"], "qa")
)
train_files = sorted(glob.glob(os.path.join(qa_dir, _TRAIN_FILE_FORMAT)))
valid_files = sorted(glob.glob(os.path.join(qa_dir, _VALIDATION_FILE_FORMAT)))
test_files = sorted(glob.glob(os.path.join(qa_dir, _TEST_FILE_FORMAT)))
if cfg.exclude_context:
web_evidence_dir = None
wiki_evidence_dir = None
else:
web_evidence_dir = os.path.join(file_paths["rc"], _WEB_EVIDENCE_DIR)
wiki_evidence_dir = os.path.join(file_paths["rc"], _WIKI_EVIDENCE_DIR)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": train_files, "web_dir": web_evidence_dir, "wiki_dir": wiki_evidence_dir},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"files": valid_files, "web_dir": web_evidence_dir, "wiki_dir": wiki_evidence_dir},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"files": test_files, "web_dir": web_evidence_dir, "wiki_dir": wiki_evidence_dir},
),
]
def _generate_examples(self, files, web_dir, wiki_dir):
"""This function returns the examples."""
def parse_example(article):
"""Return a single example from an article JSON record."""
def _strip(collection):
return [item.strip() for item in collection]
if "Answer" in article:
answer = article["Answer"]
answer_dict = {
"aliases": _strip(answer["Aliases"]),
"normalized_aliases": _strip(answer["NormalizedAliases"]),
"matched_wiki_entity_name": answer.get("MatchedWikiEntryName", "").strip(),
"normalized_matched_wiki_entity_name": answer.get("NormalizedMatchedWikiEntryName", "").strip(),
"normalized_value": answer["NormalizedValue"].strip(),
"type": answer["Type"].strip(),
"value": answer["Value"].strip(),
}
else:
answer_dict = {
"aliases": [],
"normalized_aliases": [],
"matched_wiki_entity_name": "<unk>",
"normalized_matched_wiki_entity_name": "<unk>",
"normalized_value": "<unk>",
"type": "",
"value": "<unk>",
}
if self.config.exclude_context:
article["SearchResults"] = []
article["EntityPages"] = []
def _add_context(collection, context_field, file_dir):
"""Adds context from file, or skips if file does not exist."""
new_items = []
for item in collection:
if "Filename" not in item:
logger.info("Missing context 'Filename', skipping.")
continue
new_item = item.copy()
fname = item["Filename"]
try:
with open(os.path.join(file_dir, fname), encoding="utf-8") as f:
new_item[context_field] = f.read()
except (IOError, datasets.Value("errors").NotFoundError):
logger.info("File does not exist, skipping: %s", fname)
continue
new_items.append(new_item)
return new_items
def _strip_if_str(v):
return v.strip() if isinstance(v, six.string_types) else v
def _transpose_and_strip_dicts(dicts, field_names):
return {
datasets.naming.camelcase_to_snakecase(k): [_strip_if_str(d[k]) for d in dicts]
for k in field_names
}
search_results = _transpose_and_strip_dicts(
_add_context(article.get("SearchResults", []), "SearchContext", web_dir),
["Description", "Filename", "Rank", "Title", "Url", "SearchContext"],
)
entity_pages = _transpose_and_strip_dicts(
_add_context(article.get("EntityPages", []), "WikiContext", wiki_dir),
["DocSource", "Filename", "Title", "WikiContext"],
)
question = article["Question"].strip()
question_id = article["QuestionId"]
question_source = article["QuestionSource"].strip()
return {
"entity_pages": entity_pages,
"search_results": search_results,
"question": question,
"question_id": question_id,
"question_source": question_source,
"answer": answer_dict,
}
for filepath in files:
logger.info("generating examples from = %s", filepath)
fname = os.path.basename(filepath)
with open(filepath, encoding="utf-8") as f:
current_record = ""
for line in f:
if line == " {\n":
current_record = line
elif line.startswith(" }"): # Handles final record as well.
article = json.loads(current_record + "}")
current_record = ""
example = parse_example(article)
yield "%s_%s" % (fname, example["question_id"]), example
else:
current_record += line
|