File size: 12,608 Bytes
667f81c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0a777
 
 
667f81c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0a777
667f81c
 
 
 
 
 
 
 
bb0a777
667f81c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb0a777
667f81c
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""TriviaQA: A Reading Comprehension Dataset."""

from __future__ import absolute_import, division, print_function

import glob
import json
import os

import six

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """
@article{2017arXivtriviaqa,
       author = {{Joshi}, Mandar and {Choi}, Eunsol and {Weld},
                 Daniel and {Zettlemoyer}, Luke},
        title = "{triviaqa: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension}",
      journal = {arXiv e-prints},
         year = 2017,
          eid = {arXiv:1705.03551},
        pages = {arXiv:1705.03551},
archivePrefix = {arXiv},
       eprint = {1705.03551},
}
"""
_DOWNLOAD_URL_TMPL = "http://nlp.cs.washington.edu/triviaqa/data/triviaqa-{}.tar.gz"
_TRAIN_FILE_FORMAT = "*-train.json"
_VALIDATION_FILE_FORMAT = "*-dev.json"
_TEST_FILE_FORMAT = "*test-without-answers.json"
_WEB_EVIDENCE_DIR = "evidence/web"
_WIKI_EVIDENCE_DIR = "evidence/wikipedia"

_DESCRIPTION = """\
TriviaqQA is a reading comprehension dataset containing over 650K
question-answer-evidence triples. TriviaqQA includes 95K question-answer
pairs authored by trivia enthusiasts and independently gathered evidence
documents, six per question on average, that provide high quality distant
supervision for answering the questions.
"""

_RC_DESCRIPTION = """\
Question-answer pairs where all documents for a given question contain the
answer string(s).
"""

_UNFILTERED_DESCRIPTION = """\
110k question-answer pairs for open domain QA where not all documents for a
given question contain the answer string(s). This makes the unfiltered dataset
more appropriate for IR-style QA.
"""

_CONTEXT_ADDENDUM = "Includes context from Wikipedia and search results."


def _web_evidence_dir(tmp_dir):
    return sorted(glob.glob(os.path.join(tmp_dir, _WEB_EVIDENCE_DIR)))


def _wiki_evidence_dir(tmp_dir):
    return sorted(glob.glob(os.path.join(tmp_dir, _WIKI_EVIDENCE_DIR)))


class TriviaQaConfig(datasets.BuilderConfig):
    """BuilderConfig for TriviaQA."""

    def __init__(self, unfiltered=False, exclude_context=False, **kwargs):
        """BuilderConfig for TriviaQA.

        Args:
          unfiltered: bool, whether to use the unfiltered version of the dataset,
            intended for open-domain QA.
          exclude_context: bool, whether to exclude Wikipedia and search context for
            reduced size.
          **kwargs: keyword arguments forwarded to super.
        """
        name = "unfiltered" if unfiltered else "rc"
        if exclude_context:
            name += ".nocontext"
        description = _UNFILTERED_DESCRIPTION if unfiltered else _RC_DESCRIPTION
        if not exclude_context:
            description += _CONTEXT_ADDENDUM
        super(TriviaQaConfig, self).__init__(
            name=name, description=description, version=datasets.Version("1.1.0"), **kwargs
        )
        self.unfiltered = unfiltered
        self.exclude_context = exclude_context


class TriviaQa(datasets.GeneratorBasedBuilder):
    """TriviaQA is a reading comprehension dataset.

    It containss over 650K question-answer-evidence triples.
    """

    BUILDER_CONFIGS = [
        TriviaQaConfig(unfiltered=False, exclude_context=False),  # rc
        TriviaQaConfig(unfiltered=False, exclude_context=True),  # rc.nocontext
        TriviaQaConfig(unfiltered=True, exclude_context=False),  # unfiltered
        TriviaQaConfig(unfiltered=True, exclude_context=True),
        # unfilered.nocontext
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "question": datasets.Value("string"),
                    "question_id": datasets.Value("string"),
                    "question_source": datasets.Value("string"),
                    "entity_pages": datasets.features.Sequence(
                        {
                            "doc_source": datasets.Value("string"),
                            "filename": datasets.Value("string"),
                            "title": datasets.Value("string"),
                            "wiki_context": datasets.Value("string"),
                        }
                    ),
                    "search_results": datasets.features.Sequence(
                        {
                            "description": datasets.Value("string"),
                            "filename": datasets.Value("string"),
                            "rank": datasets.Value("int32"),
                            "title": datasets.Value("string"),
                            "url": datasets.Value("string"),
                            "search_context": datasets.Value("string"),
                        }
                    ),
                    "answer": dict(
                        {
                            "aliases": datasets.features.Sequence(datasets.Value("string")),
                            "normalized_aliases": datasets.features.Sequence(datasets.Value("string")),
                            "matched_wiki_entity_name": datasets.Value("string"),
                            "normalized_matched_wiki_entity_name": datasets.Value("string"),
                            "normalized_value": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "value": datasets.Value("string"),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage="http://nlp.cs.washington.edu/triviaqa/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        cfg = self.config
        download_urls = dict()
        if not (cfg.unfiltered and cfg.exclude_context):
            download_urls["rc"] = _DOWNLOAD_URL_TMPL.format("rc")
        if cfg.unfiltered:
            download_urls["unfiltered"] = _DOWNLOAD_URL_TMPL.format("unfiltered")
        file_paths = dl_manager.download_and_extract(download_urls)

        qa_dir = (
            os.path.join(file_paths["unfiltered"], "triviaqa-unfiltered")
            if cfg.unfiltered
            else os.path.join(file_paths["rc"], "qa")
        )
        train_files = sorted(glob.glob(os.path.join(qa_dir, _TRAIN_FILE_FORMAT)))
        valid_files = sorted(glob.glob(os.path.join(qa_dir, _VALIDATION_FILE_FORMAT)))
        test_files = sorted(glob.glob(os.path.join(qa_dir, _TEST_FILE_FORMAT)))

        if cfg.exclude_context:
            web_evidence_dir = None
            wiki_evidence_dir = None
        else:
            web_evidence_dir = os.path.join(file_paths["rc"], _WEB_EVIDENCE_DIR)
            wiki_evidence_dir = os.path.join(file_paths["rc"], _WIKI_EVIDENCE_DIR)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"files": train_files, "web_dir": web_evidence_dir, "wiki_dir": wiki_evidence_dir},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"files": valid_files, "web_dir": web_evidence_dir, "wiki_dir": wiki_evidence_dir},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"files": test_files, "web_dir": web_evidence_dir, "wiki_dir": wiki_evidence_dir},
            ),
        ]

    def _generate_examples(self, files, web_dir, wiki_dir):
        """This function returns the examples."""

        def parse_example(article):
            """Return a single example from an article JSON record."""

            def _strip(collection):
                return [item.strip() for item in collection]

            if "Answer" in article:
                answer = article["Answer"]
                answer_dict = {
                    "aliases": _strip(answer["Aliases"]),
                    "normalized_aliases": _strip(answer["NormalizedAliases"]),
                    "matched_wiki_entity_name": answer.get("MatchedWikiEntryName", "").strip(),
                    "normalized_matched_wiki_entity_name": answer.get("NormalizedMatchedWikiEntryName", "").strip(),
                    "normalized_value": answer["NormalizedValue"].strip(),
                    "type": answer["Type"].strip(),
                    "value": answer["Value"].strip(),
                }
            else:
                answer_dict = {
                    "aliases": [],
                    "normalized_aliases": [],
                    "matched_wiki_entity_name": "<unk>",
                    "normalized_matched_wiki_entity_name": "<unk>",
                    "normalized_value": "<unk>",
                    "type": "",
                    "value": "<unk>",
                }

            if self.config.exclude_context:
                article["SearchResults"] = []
                article["EntityPages"] = []

            def _add_context(collection, context_field, file_dir):
                """Adds context from file, or skips if file does not exist."""
                new_items = []
                for item in collection:
                    if "Filename" not in item:
                        logger.info("Missing context 'Filename', skipping.")
                        continue

                    new_item = item.copy()
                    fname = item["Filename"]
                    try:
                        with open(os.path.join(file_dir, fname), encoding="utf-8") as f:
                            new_item[context_field] = f.read()
                    except (IOError, datasets.Value("errors").NotFoundError):
                        logger.info("File does not exist, skipping: %s", fname)
                        continue
                    new_items.append(new_item)
                return new_items

            def _strip_if_str(v):
                return v.strip() if isinstance(v, six.string_types) else v

            def _transpose_and_strip_dicts(dicts, field_names):
                return {
                    datasets.naming.camelcase_to_snakecase(k): [_strip_if_str(d[k]) for d in dicts]
                    for k in field_names
                }

            search_results = _transpose_and_strip_dicts(
                _add_context(article.get("SearchResults", []), "SearchContext", web_dir),
                ["Description", "Filename", "Rank", "Title", "Url", "SearchContext"],
            )

            entity_pages = _transpose_and_strip_dicts(
                _add_context(article.get("EntityPages", []), "WikiContext", wiki_dir),
                ["DocSource", "Filename", "Title", "WikiContext"],
            )

            question = article["Question"].strip()
            question_id = article["QuestionId"]
            question_source = article["QuestionSource"].strip()

            return {
                "entity_pages": entity_pages,
                "search_results": search_results,
                "question": question,
                "question_id": question_id,
                "question_source": question_source,
                "answer": answer_dict,
            }

        for filepath in files:
            logger.info("generating examples from = %s", filepath)
            fname = os.path.basename(filepath)

            with open(filepath, encoding="utf-8") as f:
                current_record = ""
                for line in f:
                    if line == "        {\n":
                        current_record = line
                    elif line.startswith("        }"):  # Handles final record as well.
                        article = json.loads(current_record + "}")
                        current_record = ""
                        example = parse_example(article)
                        yield "%s_%s" % (fname, example["question_id"]), example
                    else:
                        current_record += line