trivia_qa / trivia_qa.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.0)
fbee173
raw
history blame
12.5 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""TriviaQA: A Reading Comprehension Dataset."""
import glob
import json
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """
@article{2017arXivtriviaqa,
author = {{Joshi}, Mandar and {Choi}, Eunsol and {Weld},
Daniel and {Zettlemoyer}, Luke},
title = "{triviaqa: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension}",
journal = {arXiv e-prints},
year = 2017,
eid = {arXiv:1705.03551},
pages = {arXiv:1705.03551},
archivePrefix = {arXiv},
eprint = {1705.03551},
}
"""
_DOWNLOAD_URL_TMPL = "http://nlp.cs.washington.edu/triviaqa/data/triviaqa-{}.tar.gz"
_TRAIN_FILE_FORMAT = "*-train.json"
_VALIDATION_FILE_FORMAT = "*-dev.json"
_TEST_FILE_FORMAT = "*test-without-answers.json"
_WEB_EVIDENCE_DIR = "evidence/web"
_WIKI_EVIDENCE_DIR = "evidence/wikipedia"
_DESCRIPTION = """\
TriviaqQA is a reading comprehension dataset containing over 650K
question-answer-evidence triples. TriviaqQA includes 95K question-answer
pairs authored by trivia enthusiasts and independently gathered evidence
documents, six per question on average, that provide high quality distant
supervision for answering the questions.
"""
_RC_DESCRIPTION = """\
Question-answer pairs where all documents for a given question contain the
answer string(s).
"""
_UNFILTERED_DESCRIPTION = """\
110k question-answer pairs for open domain QA where not all documents for a
given question contain the answer string(s). This makes the unfiltered dataset
more appropriate for IR-style QA.
"""
_CONTEXT_ADDENDUM = "Includes context from Wikipedia and search results."
def _web_evidence_dir(tmp_dir):
return sorted(glob.glob(os.path.join(tmp_dir, _WEB_EVIDENCE_DIR)))
def _wiki_evidence_dir(tmp_dir):
return sorted(glob.glob(os.path.join(tmp_dir, _WIKI_EVIDENCE_DIR)))
class TriviaQaConfig(datasets.BuilderConfig):
"""BuilderConfig for TriviaQA."""
def __init__(self, unfiltered=False, exclude_context=False, **kwargs):
"""BuilderConfig for TriviaQA.
Args:
unfiltered: bool, whether to use the unfiltered version of the dataset,
intended for open-domain QA.
exclude_context: bool, whether to exclude Wikipedia and search context for
reduced size.
**kwargs: keyword arguments forwarded to super.
"""
name = "unfiltered" if unfiltered else "rc"
if exclude_context:
name += ".nocontext"
description = _UNFILTERED_DESCRIPTION if unfiltered else _RC_DESCRIPTION
if not exclude_context:
description += _CONTEXT_ADDENDUM
super(TriviaQaConfig, self).__init__(
name=name, description=description, version=datasets.Version("1.1.0"), **kwargs
)
self.unfiltered = unfiltered
self.exclude_context = exclude_context
class TriviaQa(datasets.GeneratorBasedBuilder):
"""TriviaQA is a reading comprehension dataset.
It containss over 650K question-answer-evidence triples.
"""
BUILDER_CONFIGS = [
TriviaQaConfig(unfiltered=False, exclude_context=False), # rc
TriviaQaConfig(unfiltered=False, exclude_context=True), # rc.nocontext
TriviaQaConfig(unfiltered=True, exclude_context=False), # unfiltered
TriviaQaConfig(unfiltered=True, exclude_context=True),
# unfilered.nocontext
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"question": datasets.Value("string"),
"question_id": datasets.Value("string"),
"question_source": datasets.Value("string"),
"entity_pages": datasets.features.Sequence(
{
"doc_source": datasets.Value("string"),
"filename": datasets.Value("string"),
"title": datasets.Value("string"),
"wiki_context": datasets.Value("string"),
}
),
"search_results": datasets.features.Sequence(
{
"description": datasets.Value("string"),
"filename": datasets.Value("string"),
"rank": datasets.Value("int32"),
"title": datasets.Value("string"),
"url": datasets.Value("string"),
"search_context": datasets.Value("string"),
}
),
"answer": dict(
{
"aliases": datasets.features.Sequence(datasets.Value("string")),
"normalized_aliases": datasets.features.Sequence(datasets.Value("string")),
"matched_wiki_entity_name": datasets.Value("string"),
"normalized_matched_wiki_entity_name": datasets.Value("string"),
"normalized_value": datasets.Value("string"),
"type": datasets.Value("string"),
"value": datasets.Value("string"),
}
),
}
),
supervised_keys=None,
homepage="http://nlp.cs.washington.edu/triviaqa/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
cfg = self.config
download_urls = dict()
if not (cfg.unfiltered and cfg.exclude_context):
download_urls["rc"] = _DOWNLOAD_URL_TMPL.format("rc")
if cfg.unfiltered:
download_urls["unfiltered"] = _DOWNLOAD_URL_TMPL.format("unfiltered")
file_paths = dl_manager.download_and_extract(download_urls)
qa_dir = (
os.path.join(file_paths["unfiltered"], "triviaqa-unfiltered")
if cfg.unfiltered
else os.path.join(file_paths["rc"], "qa")
)
train_files = sorted(glob.glob(os.path.join(qa_dir, _TRAIN_FILE_FORMAT)))
valid_files = sorted(glob.glob(os.path.join(qa_dir, _VALIDATION_FILE_FORMAT)))
test_files = sorted(glob.glob(os.path.join(qa_dir, _TEST_FILE_FORMAT)))
if cfg.exclude_context:
web_evidence_dir = None
wiki_evidence_dir = None
else:
web_evidence_dir = os.path.join(file_paths["rc"], _WEB_EVIDENCE_DIR)
wiki_evidence_dir = os.path.join(file_paths["rc"], _WIKI_EVIDENCE_DIR)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": train_files, "web_dir": web_evidence_dir, "wiki_dir": wiki_evidence_dir},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"files": valid_files, "web_dir": web_evidence_dir, "wiki_dir": wiki_evidence_dir},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"files": test_files, "web_dir": web_evidence_dir, "wiki_dir": wiki_evidence_dir},
),
]
def _generate_examples(self, files, web_dir, wiki_dir):
"""This function returns the examples."""
def parse_example(article):
"""Return a single example from an article JSON record."""
def _strip(collection):
return [item.strip() for item in collection]
if "Answer" in article:
answer = article["Answer"]
answer_dict = {
"aliases": _strip(answer["Aliases"]),
"normalized_aliases": _strip(answer["NormalizedAliases"]),
"matched_wiki_entity_name": answer.get("MatchedWikiEntryName", "").strip(),
"normalized_matched_wiki_entity_name": answer.get("NormalizedMatchedWikiEntryName", "").strip(),
"normalized_value": answer["NormalizedValue"].strip(),
"type": answer["Type"].strip(),
"value": answer["Value"].strip(),
}
else:
answer_dict = {
"aliases": [],
"normalized_aliases": [],
"matched_wiki_entity_name": "<unk>",
"normalized_matched_wiki_entity_name": "<unk>",
"normalized_value": "<unk>",
"type": "",
"value": "<unk>",
}
if self.config.exclude_context:
article["SearchResults"] = []
article["EntityPages"] = []
def _add_context(collection, context_field, file_dir):
"""Adds context from file, or skips if file does not exist."""
new_items = []
for item in collection:
if "Filename" not in item:
logger.info("Missing context 'Filename', skipping.")
continue
new_item = item.copy()
fname = item["Filename"]
try:
with open(os.path.join(file_dir, fname), encoding="utf-8") as f:
new_item[context_field] = f.read()
except (IOError, datasets.Value("errors").NotFoundError):
logger.info("File does not exist, skipping: %s", fname)
continue
new_items.append(new_item)
return new_items
def _strip_if_str(v):
return v.strip() if isinstance(v, str) else v
def _transpose_and_strip_dicts(dicts, field_names):
return {
datasets.naming.camelcase_to_snakecase(k): [_strip_if_str(d[k]) for d in dicts]
for k in field_names
}
search_results = _transpose_and_strip_dicts(
_add_context(article.get("SearchResults", []), "SearchContext", web_dir),
["Description", "Filename", "Rank", "Title", "Url", "SearchContext"],
)
entity_pages = _transpose_and_strip_dicts(
_add_context(article.get("EntityPages", []), "WikiContext", wiki_dir),
["DocSource", "Filename", "Title", "WikiContext"],
)
question = article["Question"].strip()
question_id = article["QuestionId"]
question_source = article["QuestionSource"].strip()
return {
"entity_pages": entity_pages,
"search_results": search_results,
"question": question,
"question_id": question_id,
"question_source": question_source,
"answer": answer_dict,
}
for filepath in files:
logger.info("generating examples from = %s", filepath)
fname = os.path.basename(filepath)
with open(filepath, encoding="utf-8") as f:
current_record = ""
for line in f:
if line == " {\n":
current_record = line
elif line.startswith(" }"): # Handles final record as well.
article = json.loads(current_record + "}")
current_record = ""
example = parse_example(article)
yield "%s_%s" % (fname, example["question_id"]), example
else:
current_record += line