Commit
•
f59b4da
1
Parent(s):
a0a1708
Delete loading script
Browse files- trivia_qa.py +0 -329
trivia_qa.py
DELETED
@@ -1,329 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""TriviaQA: A Reading Comprehension Dataset."""
|
18 |
-
|
19 |
-
|
20 |
-
import glob
|
21 |
-
import json
|
22 |
-
import os
|
23 |
-
|
24 |
-
import datasets
|
25 |
-
|
26 |
-
|
27 |
-
logger = datasets.logging.get_logger(__name__)
|
28 |
-
|
29 |
-
|
30 |
-
_CITATION = """
|
31 |
-
@article{2017arXivtriviaqa,
|
32 |
-
author = {{Joshi}, Mandar and {Choi}, Eunsol and {Weld},
|
33 |
-
Daniel and {Zettlemoyer}, Luke},
|
34 |
-
title = "{triviaqa: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension}",
|
35 |
-
journal = {arXiv e-prints},
|
36 |
-
year = 2017,
|
37 |
-
eid = {arXiv:1705.03551},
|
38 |
-
pages = {arXiv:1705.03551},
|
39 |
-
archivePrefix = {arXiv},
|
40 |
-
eprint = {1705.03551},
|
41 |
-
}
|
42 |
-
"""
|
43 |
-
_DOWNLOAD_URL_TMPL = "data/triviaqa-{}.zip"
|
44 |
-
_WEB_EVIDENCE_DIR = "evidence/web"
|
45 |
-
_WIKI_EVIDENCE_DIR = "evidence/wikipedia"
|
46 |
-
|
47 |
-
_DESCRIPTION = """\
|
48 |
-
TriviaqQA is a reading comprehension dataset containing over 650K
|
49 |
-
question-answer-evidence triples. TriviaqQA includes 95K question-answer
|
50 |
-
pairs authored by trivia enthusiasts and independently gathered evidence
|
51 |
-
documents, six per question on average, that provide high quality distant
|
52 |
-
supervision for answering the questions.
|
53 |
-
"""
|
54 |
-
|
55 |
-
_RC_DESCRIPTION = """\
|
56 |
-
Question-answer pairs where all documents for a given question contain the
|
57 |
-
answer string(s).
|
58 |
-
"""
|
59 |
-
|
60 |
-
_UNFILTERED_DESCRIPTION = """\
|
61 |
-
110k question-answer pairs for open domain QA where not all documents for a
|
62 |
-
given question contain the answer string(s). This makes the unfiltered dataset
|
63 |
-
more appropriate for IR-style QA.
|
64 |
-
"""
|
65 |
-
|
66 |
-
_CONTEXT_ADDENDUM = "Includes context from Wikipedia and search results."
|
67 |
-
|
68 |
-
|
69 |
-
def _web_evidence_dir(tmp_dir):
|
70 |
-
return sorted(glob.glob(os.path.join(tmp_dir, _WEB_EVIDENCE_DIR)))
|
71 |
-
|
72 |
-
|
73 |
-
def _wiki_evidence_dir(tmp_dir):
|
74 |
-
return sorted(glob.glob(os.path.join(tmp_dir, _WIKI_EVIDENCE_DIR)))
|
75 |
-
|
76 |
-
|
77 |
-
def _qa_files(file_paths, sources, split, unfiltered):
|
78 |
-
qa_dir = (
|
79 |
-
os.path.join(file_paths["unfiltered"], "triviaqa-unfiltered")
|
80 |
-
if unfiltered
|
81 |
-
else os.path.join(file_paths["rc"], "qa")
|
82 |
-
)
|
83 |
-
|
84 |
-
suffix_mapping = {
|
85 |
-
datasets.Split.TRAIN: "train.json",
|
86 |
-
datasets.Split.VALIDATION: "dev.json",
|
87 |
-
datasets.Split.TEST: "test-without-answers.json",
|
88 |
-
}
|
89 |
-
suffix = suffix_mapping[split]
|
90 |
-
|
91 |
-
filenames = [f"unfiltered-web-{suffix}"] if unfiltered else [f"{source}-{suffix}" for source in sources]
|
92 |
-
|
93 |
-
filenames = [os.path.join(qa_dir, filename) for filename in filenames]
|
94 |
-
|
95 |
-
return sorted(filenames)
|
96 |
-
|
97 |
-
|
98 |
-
class TriviaQaConfig(datasets.BuilderConfig):
|
99 |
-
"""BuilderConfig for TriviaQA."""
|
100 |
-
|
101 |
-
def __init__(self, source="all", unfiltered=False, exclude_context=False, **kwargs):
|
102 |
-
"""BuilderConfig for TriviaQA.
|
103 |
-
|
104 |
-
Args:
|
105 |
-
unfiltered: bool, whether to use the unfiltered version of the dataset,
|
106 |
-
intended for open-domain QA.
|
107 |
-
exclude_context: bool, whether to exclude Wikipedia and search context for
|
108 |
-
reduced size.
|
109 |
-
**kwargs: keyword arguments forwarded to super.
|
110 |
-
"""
|
111 |
-
name = "unfiltered" if unfiltered else "rc"
|
112 |
-
|
113 |
-
assert source in ["all", "web", "wikipedia"]
|
114 |
-
|
115 |
-
# there is no unfiltered version for the wikipedia subset
|
116 |
-
# --> unfiltered subset for source="all" is the same as for source="web"
|
117 |
-
# --> only accept source="all" if unfiltered is True
|
118 |
-
assert not unfiltered or source == "all"
|
119 |
-
|
120 |
-
if source != "all":
|
121 |
-
name += f".{source}"
|
122 |
-
|
123 |
-
if exclude_context:
|
124 |
-
name += ".nocontext"
|
125 |
-
description = _UNFILTERED_DESCRIPTION if unfiltered else _RC_DESCRIPTION
|
126 |
-
if not exclude_context:
|
127 |
-
description += _CONTEXT_ADDENDUM
|
128 |
-
super(TriviaQaConfig, self).__init__(
|
129 |
-
name=name, description=description, version=datasets.Version("1.2.0"), **kwargs
|
130 |
-
)
|
131 |
-
|
132 |
-
self.sources = ["web", "wikipedia"] if source == "all" else [source]
|
133 |
-
self.unfiltered = unfiltered
|
134 |
-
self.exclude_context = exclude_context
|
135 |
-
|
136 |
-
|
137 |
-
class TriviaQa(datasets.GeneratorBasedBuilder):
|
138 |
-
"""TriviaQA is a reading comprehension dataset.
|
139 |
-
|
140 |
-
It containss over 650K question-answer-evidence triples.
|
141 |
-
"""
|
142 |
-
|
143 |
-
BUILDER_CONFIGS = [
|
144 |
-
TriviaQaConfig(source="all", unfiltered=False, exclude_context=False), # rc
|
145 |
-
TriviaQaConfig(source="all", unfiltered=False, exclude_context=True), # rc.nocontext
|
146 |
-
TriviaQaConfig(source="all", unfiltered=True, exclude_context=False), # unfiltered
|
147 |
-
TriviaQaConfig(source="all", unfiltered=True, exclude_context=True), # unfilered.nocontext
|
148 |
-
TriviaQaConfig(source="web", unfiltered=False, exclude_context=False), # rc
|
149 |
-
TriviaQaConfig(source="web", unfiltered=False, exclude_context=True), # rc.nocontext
|
150 |
-
TriviaQaConfig(source="wikipedia", unfiltered=False, exclude_context=False), # rc
|
151 |
-
TriviaQaConfig(source="wikipedia", unfiltered=False, exclude_context=True), # rc.nocontext
|
152 |
-
]
|
153 |
-
DEFAULT_WRITER_BATCH_SIZE = 1000 # examples are quite big, so set this value to save some RAM
|
154 |
-
|
155 |
-
def _info(self):
|
156 |
-
return datasets.DatasetInfo(
|
157 |
-
description=_DESCRIPTION,
|
158 |
-
features=datasets.Features(
|
159 |
-
{
|
160 |
-
"question": datasets.Value("string"),
|
161 |
-
"question_id": datasets.Value("string"),
|
162 |
-
"question_source": datasets.Value("string"),
|
163 |
-
"entity_pages": datasets.features.Sequence(
|
164 |
-
{
|
165 |
-
"doc_source": datasets.Value("string"),
|
166 |
-
"filename": datasets.Value("string"),
|
167 |
-
"title": datasets.Value("string"),
|
168 |
-
"wiki_context": datasets.Value("string"),
|
169 |
-
}
|
170 |
-
),
|
171 |
-
"search_results": datasets.features.Sequence(
|
172 |
-
{
|
173 |
-
"description": datasets.Value("string"),
|
174 |
-
"filename": datasets.Value("string"),
|
175 |
-
"rank": datasets.Value("int32"),
|
176 |
-
"title": datasets.Value("string"),
|
177 |
-
"url": datasets.Value("string"),
|
178 |
-
"search_context": datasets.Value("string"),
|
179 |
-
}
|
180 |
-
),
|
181 |
-
"answer": dict(
|
182 |
-
{
|
183 |
-
"aliases": datasets.features.Sequence(datasets.Value("string")),
|
184 |
-
"normalized_aliases": datasets.features.Sequence(datasets.Value("string")),
|
185 |
-
"matched_wiki_entity_name": datasets.Value("string"),
|
186 |
-
"normalized_matched_wiki_entity_name": datasets.Value("string"),
|
187 |
-
"normalized_value": datasets.Value("string"),
|
188 |
-
"type": datasets.Value("string"),
|
189 |
-
"value": datasets.Value("string"),
|
190 |
-
}
|
191 |
-
),
|
192 |
-
}
|
193 |
-
),
|
194 |
-
supervised_keys=None,
|
195 |
-
homepage="http://nlp.cs.washington.edu/triviaqa/",
|
196 |
-
citation=_CITATION,
|
197 |
-
)
|
198 |
-
|
199 |
-
def _split_generators(self, dl_manager):
|
200 |
-
"""Returns SplitGenerators."""
|
201 |
-
cfg = self.config
|
202 |
-
download_urls = dict()
|
203 |
-
if not (cfg.unfiltered and cfg.exclude_context):
|
204 |
-
download_urls["rc"] = _DOWNLOAD_URL_TMPL.format("rc")
|
205 |
-
if cfg.unfiltered:
|
206 |
-
download_urls["unfiltered"] = _DOWNLOAD_URL_TMPL.format("unfiltered")
|
207 |
-
file_paths = dl_manager.download_and_extract(download_urls)
|
208 |
-
|
209 |
-
if cfg.exclude_context:
|
210 |
-
web_evidence_dir = None
|
211 |
-
wiki_evidence_dir = None
|
212 |
-
else:
|
213 |
-
web_evidence_dir = os.path.join(file_paths["rc"], _WEB_EVIDENCE_DIR)
|
214 |
-
wiki_evidence_dir = os.path.join(file_paths["rc"], _WIKI_EVIDENCE_DIR)
|
215 |
-
|
216 |
-
return [
|
217 |
-
datasets.SplitGenerator(
|
218 |
-
name=name,
|
219 |
-
gen_kwargs={
|
220 |
-
"files": _qa_files(file_paths, cfg.sources, name, cfg.unfiltered),
|
221 |
-
"web_dir": web_evidence_dir,
|
222 |
-
"wiki_dir": wiki_evidence_dir,
|
223 |
-
},
|
224 |
-
)
|
225 |
-
for name in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
|
226 |
-
]
|
227 |
-
|
228 |
-
def _generate_examples(self, files, web_dir, wiki_dir):
|
229 |
-
"""This function returns the examples."""
|
230 |
-
|
231 |
-
def parse_example(article):
|
232 |
-
"""Return a single example from an article JSON record."""
|
233 |
-
|
234 |
-
def _strip(collection):
|
235 |
-
return [item.strip() for item in collection]
|
236 |
-
|
237 |
-
if "Answer" in article:
|
238 |
-
answer = article["Answer"]
|
239 |
-
answer_dict = {
|
240 |
-
"aliases": _strip(answer["Aliases"]),
|
241 |
-
"normalized_aliases": _strip(answer["NormalizedAliases"]),
|
242 |
-
"matched_wiki_entity_name": answer.get("MatchedWikiEntryName", "").strip(),
|
243 |
-
"normalized_matched_wiki_entity_name": answer.get("NormalizedMatchedWikiEntryName", "").strip(),
|
244 |
-
"normalized_value": answer["NormalizedValue"].strip(),
|
245 |
-
"type": answer["Type"].strip(),
|
246 |
-
"value": answer["Value"].strip(),
|
247 |
-
}
|
248 |
-
else:
|
249 |
-
answer_dict = {
|
250 |
-
"aliases": [],
|
251 |
-
"normalized_aliases": [],
|
252 |
-
"matched_wiki_entity_name": "<unk>",
|
253 |
-
"normalized_matched_wiki_entity_name": "<unk>",
|
254 |
-
"normalized_value": "<unk>",
|
255 |
-
"type": "",
|
256 |
-
"value": "<unk>",
|
257 |
-
}
|
258 |
-
|
259 |
-
if self.config.exclude_context:
|
260 |
-
article["SearchResults"] = []
|
261 |
-
article["EntityPages"] = []
|
262 |
-
|
263 |
-
def _add_context(collection, context_field, file_dir):
|
264 |
-
"""Adds context from file, or skips if file does not exist."""
|
265 |
-
new_items = []
|
266 |
-
for item in collection:
|
267 |
-
if "Filename" not in item:
|
268 |
-
logger.info("Missing context 'Filename', skipping.")
|
269 |
-
continue
|
270 |
-
|
271 |
-
new_item = item.copy()
|
272 |
-
fname = item["Filename"]
|
273 |
-
try:
|
274 |
-
with open(os.path.join(file_dir, fname), encoding="utf-8") as f:
|
275 |
-
new_item[context_field] = f.read()
|
276 |
-
except (IOError, FileNotFoundError):
|
277 |
-
logger.info("File does not exist, skipping: %s", fname)
|
278 |
-
continue
|
279 |
-
new_items.append(new_item)
|
280 |
-
return new_items
|
281 |
-
|
282 |
-
def _strip_if_str(v):
|
283 |
-
return v.strip() if isinstance(v, str) else v
|
284 |
-
|
285 |
-
def _transpose_and_strip_dicts(dicts, field_names):
|
286 |
-
return {
|
287 |
-
datasets.naming.camelcase_to_snakecase(k): [_strip_if_str(d[k]) for d in dicts]
|
288 |
-
for k in field_names
|
289 |
-
}
|
290 |
-
|
291 |
-
search_results = _transpose_and_strip_dicts(
|
292 |
-
_add_context(article.get("SearchResults", []), "SearchContext", web_dir),
|
293 |
-
["Description", "Filename", "Rank", "Title", "Url", "SearchContext"],
|
294 |
-
)
|
295 |
-
|
296 |
-
entity_pages = _transpose_and_strip_dicts(
|
297 |
-
_add_context(article.get("EntityPages", []), "WikiContext", wiki_dir),
|
298 |
-
["DocSource", "Filename", "Title", "WikiContext"],
|
299 |
-
)
|
300 |
-
|
301 |
-
question = article["Question"].strip()
|
302 |
-
question_id = article["QuestionId"]
|
303 |
-
question_source = article["QuestionSource"].strip()
|
304 |
-
|
305 |
-
return {
|
306 |
-
"entity_pages": entity_pages,
|
307 |
-
"search_results": search_results,
|
308 |
-
"question": question,
|
309 |
-
"question_id": question_id,
|
310 |
-
"question_source": question_source,
|
311 |
-
"answer": answer_dict,
|
312 |
-
}
|
313 |
-
|
314 |
-
for filepath in files:
|
315 |
-
logger.info("generating examples from = %s", filepath)
|
316 |
-
fname = os.path.basename(filepath)
|
317 |
-
|
318 |
-
with open(filepath, encoding="utf-8") as f:
|
319 |
-
current_record = ""
|
320 |
-
for line in f:
|
321 |
-
if line == " {\n":
|
322 |
-
current_record = line
|
323 |
-
elif line.startswith(" }"): # Handles final record as well.
|
324 |
-
article = json.loads(current_record + "}")
|
325 |
-
current_record = ""
|
326 |
-
example = parse_example(article)
|
327 |
-
yield "%s_%s" % (fname, example["question_id"]), example
|
328 |
-
else:
|
329 |
-
current_record += line
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|