|
import re |
|
|
|
import datasets |
|
|
|
_CITATION = """ |
|
@INPROCEEDINGS{ |
|
8998477, |
|
author={O. M. {Singh} and A. {Padia} and A. {Joshi}}, |
|
booktitle={2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC)}, |
|
title={Named Entity Recognition for Nepali Language}, |
|
year={2019}, |
|
volume={}, |
|
number={}, |
|
pages={184-190}, |
|
keywords={Named Entity Recognition;Nepali;Low-resource;BiLSTM;CNN;Grapheme}, |
|
doi={10.1109/CIC48465.2019.00031}, |
|
ISSN={null}, |
|
month={Dec},} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Ebiquity V2 (stemmed) dataset for Nepali NER task. The dataset is tagged with BIO scheme. |
|
""" |
|
|
|
_URL = "https://raw.githubusercontent.com/mani-rai/nepali-ner/master/data/ebiquity_v2/stemmed/total.bio" |
|
|
|
|
|
class EbiquityV2StemmedConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Ebiquity V2 Stemmed""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Ebiquity V2 Stemmed. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(EbiquityV2StemmedConfig, self).__init__(**kwargs) |
|
|
|
|
|
class EbiquityV2Stemmed(datasets.GeneratorBasedBuilder): |
|
"""Ebiquity V2 Stemmed""" |
|
|
|
BUILDER_CONFIGS = [ |
|
EbiquityV2StemmedConfig(name="ebiquity-v2-stemmed", version=datasets.Version("1.0.0"), description="Ebiquity v2 stemmed dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-PER", |
|
"I-PER", |
|
"B-ORG", |
|
"I-ORG", |
|
"B-LOC", |
|
"I-LOC", |
|
"B-MISC", |
|
"I-MISC", |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://arxiv.org/abs/1908.05828", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file}) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
ner_tags = [] |
|
for line in f: |
|
if line == "" or line == "\n": |
|
if tokens: |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
ner_tags = [] |
|
else: |
|
splits = re.split('\t+', line) |
|
tokens.append(splits[0]) |
|
ner_tags.append(splits[1].rstrip()) |
|
yield guid, { |
|
"id": str(guid), |
|
"tokens": tokens, |
|
"ner_tags": ner_tags, |
|
} |