haneulpark commited on
Commit
0fad260
·
verified ·
1 Parent(s): f19398e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -41,7 +41,7 @@ configs:
41
  dataset_info:
42
  - config_name: train_test
43
  features:
44
- - name: new SMILES
45
  dtype: string
46
  - name: ID
47
  dtype: int64
@@ -110,11 +110,11 @@ and inspecting the loaded dataset
110
  >>> train_test
111
  DatasetDict({
112
  train: Dataset({
113
- features: ['new SMILES', 'ID', 'endpoint', 'MW'],
114
  num_rows: 6862
115
  })
116
  test: Dataset({
117
- features: ['new SMILES', 'ID', 'endpoint', 'MW'],
118
  num_rows: 1714
119
  })
120
  })
@@ -141,13 +141,13 @@ then load, featurize, split, fit, and evaluate the a catboost model
141
 
142
  split_featurised_dataset = featurise_dataset(
143
  split_dataset,
144
- column = "new SMILES",
145
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
146
 
147
  model = load_model_from_dict({
148
  "name": "cat_boost_classifier",
149
  "config": {
150
- "x_features": ['new SMILES::morgan', 'new SMILES::maccs_rdkit'],
151
  "y_features": ['endpoint']}})
152
 
153
  model.train(split_featurised_dataset["train"])
 
41
  dataset_info:
42
  - config_name: train_test
43
  features:
44
+ - name: SMILES
45
  dtype: string
46
  - name: ID
47
  dtype: int64
 
110
  >>> train_test
111
  DatasetDict({
112
  train: Dataset({
113
+ features: ['SMILES', 'ID', 'endpoint', 'MW'],
114
  num_rows: 6862
115
  })
116
  test: Dataset({
117
+ features: ['SMILES', 'ID', 'endpoint', 'MW'],
118
  num_rows: 1714
119
  })
120
  })
 
141
 
142
  split_featurised_dataset = featurise_dataset(
143
  split_dataset,
144
+ column = "SMILES",
145
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
146
 
147
  model = load_model_from_dict({
148
  "name": "cat_boost_classifier",
149
  "config": {
150
+ "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
151
  "y_features": ['endpoint']}})
152
 
153
  model.train(split_featurised_dataset["train"])