haneulpark commited on
Commit
63dd9aa
·
verified ·
1 Parent(s): 5ddb0a5

Update MutagenLou2023 Preprocessing.py

Browse files
Files changed (1) hide show
  1. MutagenLou2023 Preprocessing.py +34 -29
MutagenLou2023 Preprocessing.py CHANGED
@@ -67,7 +67,7 @@ for id, alert in problems:
67
  #5. Select columns and rename the dataset
68
 
69
  Lou2023.rename(columns={'X': 'new SMILES'}, inplace=True)
70
- Lou2023[['new SMILES', 'ID', 'endpoint', 'MW']].to_csv('Lou2023.csv', index=False)
71
 
72
  #6. Import modules to split the dataset
73
 
@@ -99,7 +99,7 @@ def tanimoto_distances_yield(fingerprints, num_fingerprints):
99
  for i in range(1, num_fingerprints):
100
  yield [1 - x for x in DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints[:i])]
101
 
102
- def cluster_data(fingerprints, num_points, distance_threshold, reordering=False):
103
  nbr_lists = [None] * num_points
104
  for i in range(num_points):
105
  nbr_lists[i] = []
@@ -141,6 +141,32 @@ def cluster_data(fingerprints, num_points, distance_threshold, reordering=False)
141
  res.append(tuple(t_res))
142
  return tuple(res)
143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  def cluster_fingerprints(fingerprints, method="Auto"):
145
  num_fingerprints = len(fingerprints)
146
 
@@ -150,40 +176,19 @@ def cluster_fingerprints(fingerprints, method="Auto"):
150
  if method == "TB":
151
  cutoff = 0.56
152
  print("Butina clustering is selected. Dataset size is:", num_fingerprints)
153
- clusters = cluster_data(fingerprints, num_fingerprints, cutoff)
154
 
155
- elif method == "Hierarchy":
156
- import scipy.spatial.distance as ssd
157
- from scipy.cluster import hierarchy
158
 
 
159
  print("Hierarchical clustering is selected. Dataset size is:", num_fingerprints)
 
160
 
161
- av_cluster_size = 8
162
- dists = []
163
-
164
- for i in range(0, num_fingerprints):
165
- sims = DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints)
166
- dists.append([1 - x for x in sims])
167
-
168
- dis_array = ssd.squareform(dists)
169
- Z = hierarchy.linkage(dis_array)
170
- average_cluster_size = av_cluster_size
171
- cluster_amount = int(num_fingerprints / average_cluster_size)
172
- clusters = hierarchy.cut_tree(Z, n_clusters=cluster_amount)
173
-
174
- clusters = list(clusters.transpose()[0])
175
- cs = []
176
- for i in range(max(clusters) + 1):
177
- cs.append([])
178
-
179
- for i in range(len(clusters)):
180
- cs[clusters[i]].append(i)
181
- return cs
182
 
183
  def split_dataframe(dataframe, smiles_col_index, fraction_to_train, split_for_exact_fraction=True, cluster_method="Auto"):
184
  try:
185
  import math
186
-
187
  smiles_column_name = dataframe.columns[smiles_col_index]
188
  molecule = 'molecule'
189
  fingerprint = 'fingerprint'
@@ -253,9 +258,9 @@ def split_df_into_train_and_test_sets(df):
253
  test = df[df['group'] == 'testing']
254
  return train, test
255
 
 
256
  # 8. Test and train datasets have been made
257
 
258
- Mutagen = pd.read_csv('Lou2023.csv')
259
  smiles_index = 0
260
  realistic = realistic_split(Mutagen.copy(), smiles_index, 0.8, split_for_exact_frac=True, cluster_method="Auto")
261
  realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)
 
67
  #5. Select columns and rename the dataset
68
 
69
  Lou2023.rename(columns={'X': 'new SMILES'}, inplace=True)
70
+ newLou2023 = Lou2023[['new SMILES', 'ID', 'endpoint', 'MW']]
71
 
72
  #6. Import modules to split the dataset
73
 
 
99
  for i in range(1, num_fingerprints):
100
  yield [1 - x for x in DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints[:i])]
101
 
102
+ def butina_cluster(fingerprints, num_points, distance_threshold, reordering=False):
103
  nbr_lists = [None] * num_points
104
  for i in range(num_points):
105
  nbr_lists[i] = []
 
141
  res.append(tuple(t_res))
142
  return tuple(res)
143
 
144
+ def hierarchal_cluster(fingerprints):
145
+
146
+ num_finger_prints = len(fingerprints)
147
+
148
+ av_cluster_size = 8
149
+ dists = []
150
+
151
+ for i in range(0, num_fingerprints):
152
+ sims = DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints)
153
+ dists.append([1 - x for x in sims])
154
+
155
+ dis_array = ssd.squareform(dists)
156
+ Z = hierarchy.linkage(dis_array)
157
+ average_cluster_size = av_cluster_size
158
+ cluster_amount = int(num_fingerprints / average_cluster_size)
159
+ clusters = hierarchy.cut_tree(Z, n_clusters=cluster_amount)
160
+
161
+ clusters = list(clusters.transpose()[0])
162
+ cs = []
163
+ for i in range(max(clusters) + 1):
164
+ cs.append([])
165
+
166
+ for i in range(len(clusters)):
167
+ cs[clusters[i]].append(i)
168
+ return cs
169
+
170
  def cluster_fingerprints(fingerprints, method="Auto"):
171
  num_fingerprints = len(fingerprints)
172
 
 
176
  if method == "TB":
177
  cutoff = 0.56
178
  print("Butina clustering is selected. Dataset size is:", num_fingerprints)
179
+ clusters = butina_cluster(fingerprints, num_fingerprints, cutoff)
180
 
181
+ return clusters
 
 
182
 
183
+ elif method == "Hierarchy":
184
  print("Hierarchical clustering is selected. Dataset size is:", num_fingerprints)
185
+ clusters = hierarchal_cluster(fingerprints, num_fingerprints, 0.56)
186
 
187
+ return clusters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188
 
189
  def split_dataframe(dataframe, smiles_col_index, fraction_to_train, split_for_exact_fraction=True, cluster_method="Auto"):
190
  try:
191
  import math
 
192
  smiles_column_name = dataframe.columns[smiles_col_index]
193
  molecule = 'molecule'
194
  fingerprint = 'fingerprint'
 
258
  test = df[df['group'] == 'testing']
259
  return train, test
260
 
261
+
262
  # 8. Test and train datasets have been made
263
 
 
264
  smiles_index = 0
265
  realistic = realistic_split(Mutagen.copy(), smiles_index, 0.8, split_for_exact_frac=True, cluster_method="Auto")
266
  realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)