Datasets:
Update MutagenLou2023 Preprocessing.py
Browse files- MutagenLou2023 Preprocessing.py +34 -29
MutagenLou2023 Preprocessing.py
CHANGED
@@ -67,7 +67,7 @@ for id, alert in problems:
|
|
67 |
#5. Select columns and rename the dataset
|
68 |
|
69 |
Lou2023.rename(columns={'X': 'new SMILES'}, inplace=True)
|
70 |
-
Lou2023[['new SMILES', 'ID', 'endpoint', 'MW']]
|
71 |
|
72 |
#6. Import modules to split the dataset
|
73 |
|
@@ -99,7 +99,7 @@ def tanimoto_distances_yield(fingerprints, num_fingerprints):
|
|
99 |
for i in range(1, num_fingerprints):
|
100 |
yield [1 - x for x in DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints[:i])]
|
101 |
|
102 |
-
def
|
103 |
nbr_lists = [None] * num_points
|
104 |
for i in range(num_points):
|
105 |
nbr_lists[i] = []
|
@@ -141,6 +141,32 @@ def cluster_data(fingerprints, num_points, distance_threshold, reordering=False)
|
|
141 |
res.append(tuple(t_res))
|
142 |
return tuple(res)
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def cluster_fingerprints(fingerprints, method="Auto"):
|
145 |
num_fingerprints = len(fingerprints)
|
146 |
|
@@ -150,40 +176,19 @@ def cluster_fingerprints(fingerprints, method="Auto"):
|
|
150 |
if method == "TB":
|
151 |
cutoff = 0.56
|
152 |
print("Butina clustering is selected. Dataset size is:", num_fingerprints)
|
153 |
-
clusters =
|
154 |
|
155 |
-
|
156 |
-
import scipy.spatial.distance as ssd
|
157 |
-
from scipy.cluster import hierarchy
|
158 |
|
|
|
159 |
print("Hierarchical clustering is selected. Dataset size is:", num_fingerprints)
|
|
|
160 |
|
161 |
-
|
162 |
-
dists = []
|
163 |
-
|
164 |
-
for i in range(0, num_fingerprints):
|
165 |
-
sims = DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints)
|
166 |
-
dists.append([1 - x for x in sims])
|
167 |
-
|
168 |
-
dis_array = ssd.squareform(dists)
|
169 |
-
Z = hierarchy.linkage(dis_array)
|
170 |
-
average_cluster_size = av_cluster_size
|
171 |
-
cluster_amount = int(num_fingerprints / average_cluster_size)
|
172 |
-
clusters = hierarchy.cut_tree(Z, n_clusters=cluster_amount)
|
173 |
-
|
174 |
-
clusters = list(clusters.transpose()[0])
|
175 |
-
cs = []
|
176 |
-
for i in range(max(clusters) + 1):
|
177 |
-
cs.append([])
|
178 |
-
|
179 |
-
for i in range(len(clusters)):
|
180 |
-
cs[clusters[i]].append(i)
|
181 |
-
return cs
|
182 |
|
183 |
def split_dataframe(dataframe, smiles_col_index, fraction_to_train, split_for_exact_fraction=True, cluster_method="Auto"):
|
184 |
try:
|
185 |
import math
|
186 |
-
|
187 |
smiles_column_name = dataframe.columns[smiles_col_index]
|
188 |
molecule = 'molecule'
|
189 |
fingerprint = 'fingerprint'
|
@@ -253,9 +258,9 @@ def split_df_into_train_and_test_sets(df):
|
|
253 |
test = df[df['group'] == 'testing']
|
254 |
return train, test
|
255 |
|
|
|
256 |
# 8. Test and train datasets have been made
|
257 |
|
258 |
-
Mutagen = pd.read_csv('Lou2023.csv')
|
259 |
smiles_index = 0
|
260 |
realistic = realistic_split(Mutagen.copy(), smiles_index, 0.8, split_for_exact_frac=True, cluster_method="Auto")
|
261 |
realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)
|
|
|
67 |
#5. Select columns and rename the dataset
|
68 |
|
69 |
Lou2023.rename(columns={'X': 'new SMILES'}, inplace=True)
|
70 |
+
newLou2023 = Lou2023[['new SMILES', 'ID', 'endpoint', 'MW']]
|
71 |
|
72 |
#6. Import modules to split the dataset
|
73 |
|
|
|
99 |
for i in range(1, num_fingerprints):
|
100 |
yield [1 - x for x in DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints[:i])]
|
101 |
|
102 |
+
def butina_cluster(fingerprints, num_points, distance_threshold, reordering=False):
|
103 |
nbr_lists = [None] * num_points
|
104 |
for i in range(num_points):
|
105 |
nbr_lists[i] = []
|
|
|
141 |
res.append(tuple(t_res))
|
142 |
return tuple(res)
|
143 |
|
144 |
+
def hierarchal_cluster(fingerprints):
|
145 |
+
|
146 |
+
num_finger_prints = len(fingerprints)
|
147 |
+
|
148 |
+
av_cluster_size = 8
|
149 |
+
dists = []
|
150 |
+
|
151 |
+
for i in range(0, num_fingerprints):
|
152 |
+
sims = DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints)
|
153 |
+
dists.append([1 - x for x in sims])
|
154 |
+
|
155 |
+
dis_array = ssd.squareform(dists)
|
156 |
+
Z = hierarchy.linkage(dis_array)
|
157 |
+
average_cluster_size = av_cluster_size
|
158 |
+
cluster_amount = int(num_fingerprints / average_cluster_size)
|
159 |
+
clusters = hierarchy.cut_tree(Z, n_clusters=cluster_amount)
|
160 |
+
|
161 |
+
clusters = list(clusters.transpose()[0])
|
162 |
+
cs = []
|
163 |
+
for i in range(max(clusters) + 1):
|
164 |
+
cs.append([])
|
165 |
+
|
166 |
+
for i in range(len(clusters)):
|
167 |
+
cs[clusters[i]].append(i)
|
168 |
+
return cs
|
169 |
+
|
170 |
def cluster_fingerprints(fingerprints, method="Auto"):
|
171 |
num_fingerprints = len(fingerprints)
|
172 |
|
|
|
176 |
if method == "TB":
|
177 |
cutoff = 0.56
|
178 |
print("Butina clustering is selected. Dataset size is:", num_fingerprints)
|
179 |
+
clusters = butina_cluster(fingerprints, num_fingerprints, cutoff)
|
180 |
|
181 |
+
return clusters
|
|
|
|
|
182 |
|
183 |
+
elif method == "Hierarchy":
|
184 |
print("Hierarchical clustering is selected. Dataset size is:", num_fingerprints)
|
185 |
+
clusters = hierarchal_cluster(fingerprints, num_fingerprints, 0.56)
|
186 |
|
187 |
+
return clusters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
def split_dataframe(dataframe, smiles_col_index, fraction_to_train, split_for_exact_fraction=True, cluster_method="Auto"):
|
190 |
try:
|
191 |
import math
|
|
|
192 |
smiles_column_name = dataframe.columns[smiles_col_index]
|
193 |
molecule = 'molecule'
|
194 |
fingerprint = 'fingerprint'
|
|
|
258 |
test = df[df['group'] == 'testing']
|
259 |
return train, test
|
260 |
|
261 |
+
|
262 |
# 8. Test and train datasets have been made
|
263 |
|
|
|
264 |
smiles_index = 0
|
265 |
realistic = realistic_split(Mutagen.copy(), smiles_index, 0.8, split_for_exact_frac=True, cluster_method="Auto")
|
266 |
realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic)
|