|
"""IMDB movie reviews dataset translated to Portuguese.""" |
|
|
|
import csv |
|
|
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
_DESCRIPTION = """\ |
|
Large Movie Review Dataset. |
|
This is a dataset for binary sentiment classification containing substantially \ |
|
more data than previous benchmark datasets. We provide a set of 25,000 highly \ |
|
polar movie reviews for training, and 25,000 for testing. There is additional \ |
|
unlabeled data for use as well.\ |
|
""" |
|
|
|
_CITATION = """\ |
|
@InProceedings{maas-EtAl:2011:ACL-HLT2011, |
|
author = {Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew Y. and Potts, Christopher}, |
|
title = {Learning Word Vectors for Sentiment Analysis}, |
|
booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies}, |
|
month = {June}, |
|
year = {2011}, |
|
address = {Portland, Oregon, USA}, |
|
publisher = {Association for Computational Linguistics}, |
|
pages = {142--150}, |
|
url = {http://www.aclweb.org/anthology/P11-1015} |
|
} |
|
""" |
|
|
|
_DOWNLOAD_URL = "https://huggingface.co/datasets/maritaca-ai/imdb_pt/resolve/main" |
|
|
|
class IMDBReviewsConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for IMDBReviews.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for IMDBReviews. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
|
|
class Imdb(datasets.GeneratorBasedBuilder): |
|
"""IMDB movie reviews dataset translated to Portuguese.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
IMDBReviewsConfig( |
|
name="plain_text", |
|
description="Plain text", |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["negativo", "positivo"])} |
|
), |
|
supervised_keys=None, |
|
homepage="http://ai.stanford.edu/~amaas/data/sentiment/", |
|
citation=_CITATION, |
|
task_templates=[TextClassification(text_column="text", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(f"{_DOWNLOAD_URL}/train.csv") |
|
test_path = dl_manager.download_and_extract(f"{_DOWNLOAD_URL}/test.csv") |
|
test_all_path = dl_manager.download_and_extract(f"{_DOWNLOAD_URL}/test-all.csv") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path, "split": "train"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path, "split": "test"} |
|
), |
|
datasets.SplitGenerator( |
|
name="test_all", gen_kwargs={"filepath": test_all_path, "split": "test_all"} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Generate aclImdb examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True |
|
) |
|
for id_, row in enumerate(csv_reader): |
|
if id_ == 0: |
|
continue |
|
text, label = row |
|
yield id_, {"text": text, "label": label} |