File size: 1,677 Bytes
fbd0581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

---
language: 
- en
bigbio_language: 
- English
license: other
multilinguality: monolingual
bigbio_license_shortname: PUBLIC_DOMAIN_MARK_1p0
pretty_name: BC5CDR
homepage: http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/
bigbio_pubmed: True
bigbio_public: True
bigbio_tasks: 
- NAMED_ENTITY_RECOGNITION
- NAMED_ENTITY_DISAMBIGUATION
- RELATION_EXTRACTION
---


# Dataset Card for BC5CDR

## Dataset Description

- **Homepage:** http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/
- **Pubmed:** True
- **Public:** True
- **Tasks:** NER,NED,RE


The BioCreative V Chemical Disease Relation (CDR) dataset is a large annotated text corpus of human annotations of all chemicals, diseases and their interactions in 1,500 PubMed articles.



## Citation Information

```
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
  author    = {Jiao Li and
               Yueping Sun and
               Robin J. Johnson and
               Daniela Sciaky and
               Chih{-}Hsuan Wei and
               Robert Leaman and
               Allan Peter Davis and
               Carolyn J. Mattingly and
               Thomas C. Wiegers and
               Zhiyong Lu},
  title     = {BioCreative {V} {CDR} task corpus: a resource for chemical disease
               relation extraction},
  journal   = {Database J. Biol. Databases Curation},
  volume    = {2016},
  year      = {2016},
  url       = {https://doi.org/10.1093/database/baw068},
  doi       = {10.1093/database/baw068},
  timestamp = {Thu, 13 Aug 2020 12:41:41 +0200},
  biburl    = {https://dblp.org/rec/journals/biodb/LiSJSWLDMWL16.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

```