|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
To this end, we set up a challenge task through BioCreative V to automatically |
|
extract CDRs from the literature. More specifically, we designed two challenge |
|
tasks: disease named entity recognition (DNER) and chemical-induced disease |
|
(CID) relation extraction. To assist system development and assessment, we |
|
created a large annotated text corpus that consists of human annotations of |
|
all chemicals, diseases and their interactions in 1,500 PubMed articles. |
|
|
|
-- 'Overview of the BioCreative V Chemical Disease Relation (CDR) Task' |
|
""" |
|
import collections |
|
import itertools |
|
import os |
|
|
|
import datasets |
|
from bioc import biocxml |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import get_texts_and_offsets_from_bioc_ann |
|
|
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{DBLP:journals/biodb/LiSJSWLDMWL16, |
|
author = {Jiao Li and |
|
Yueping Sun and |
|
Robin J. Johnson and |
|
Daniela Sciaky and |
|
Chih{-}Hsuan Wei and |
|
Robert Leaman and |
|
Allan Peter Davis and |
|
Carolyn J. Mattingly and |
|
Thomas C. Wiegers and |
|
Zhiyong Lu}, |
|
title = {BioCreative {V} {CDR} task corpus: a resource for chemical disease |
|
relation extraction}, |
|
journal = {Database J. Biol. Databases Curation}, |
|
volume = {2016}, |
|
year = {2016}, |
|
url = {https://doi.org/10.1093/database/baw068}, |
|
doi = {10.1093/database/baw068}, |
|
timestamp = {Thu, 13 Aug 2020 12:41:41 +0200}, |
|
biburl = {https://dblp.org/rec/journals/biodb/LiSJSWLDMWL16.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "bc5cdr" |
|
_DISPLAYNAME = "BC5CDR" |
|
|
|
_DESCRIPTION = """\ |
|
The BioCreative V Chemical Disease Relation (CDR) dataset is a large annotated \ |
|
text corpus of human annotations of all chemicals, diseases and their \ |
|
interactions in 1,500 PubMed articles. |
|
""" |
|
|
|
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/" |
|
|
|
_LICENSE = 'Public Domain Mark 1.0' |
|
|
|
_URLs = { |
|
"source": "https://github.com/JHnlp/BioCreative-V-CDR-Corpus/raw/master/CDR_Data.zip", |
|
"bigbio_kb": "https://github.com/JHnlp/BioCreative-V-CDR-Corpus/raw/master/CDR_Data.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
Tasks.NAMED_ENTITY_DISAMBIGUATION, |
|
Tasks.RELATION_EXTRACTION, |
|
] |
|
_SOURCE_VERSION = "01.05.16" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class Bc5cdrDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
BioCreative V Chemical Disease Relation (CDR) Task. |
|
""" |
|
|
|
DEFAULT_CONFIG_NAME = "bc5cdr_source" |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="bc5cdr_source", |
|
version=SOURCE_VERSION, |
|
description="BC5CDR source schema", |
|
schema="source", |
|
subset_id="bc5cdr", |
|
), |
|
BigBioConfig( |
|
name="bc5cdr_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="BC5CDR simplified BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="bc5cdr", |
|
), |
|
] |
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"passages": [ |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"offsets": [[datasets.Value("int32")]], |
|
"text": [datasets.Value("string")], |
|
"type": datasets.Value("string"), |
|
"normalized": [ |
|
{ |
|
"db_name": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arg1_id": datasets.Value("string"), |
|
"arg2_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
] |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URLs[self.config.schema] |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "CDR_Data/CDR.Corpus.v010516/CDR_TrainingSet.BioC.xml" |
|
), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "CDR_Data/CDR.Corpus.v010516/CDR_TestSet.BioC.xml" |
|
), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, |
|
"CDR_Data/CDR.Corpus.v010516/CDR_DevelopmentSet.BioC.xml", |
|
), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _get_bioc_entity(self, span, doc_text, db_id_key="MESH"): |
|
"""Parse BioC entity annotation. |
|
|
|
Parameters |
|
---------- |
|
span : BioCAnnotation |
|
BioC entity annotation |
|
doc_text : string |
|
document text, required to construct text spans |
|
db_id_key : str, optional |
|
database name used for normalization, by default "MESH" |
|
|
|
Returns |
|
------- |
|
dict |
|
entity information |
|
""" |
|
|
|
|
|
offsets, texts = get_texts_and_offsets_from_bioc_ann(span) |
|
db_ids = span.infons[db_id_key] if db_id_key else "-1" |
|
|
|
|
|
|
|
if db_ids == "-1": |
|
db_ids_list = [] |
|
else: |
|
db_ids_list = db_ids.split("|") |
|
|
|
normalized = [{"db_name": db_id_key, "db_id": db_id} for db_id in db_ids_list] |
|
|
|
return { |
|
"id": span.id, |
|
"offsets": offsets, |
|
"text": texts, |
|
"type": span.infons["type"], |
|
"normalized": normalized, |
|
} |
|
|
|
def _get_relations(self, relations, entities): |
|
""" |
|
BC5CDR provides abstract-level annotations for entity-linked relation |
|
pairs rather than materializing links between all surface form |
|
mentions of relations. An example from train id=2670794, the relation |
|
- (chemical, disease) (D014148, D004211) |
|
is materialized as 6 mentions of entity pairs |
|
- 2x ('tranexamic acid', 'intravascular coagulation') |
|
- 4x ('AMCA', 'intravascular coagulation') |
|
""" |
|
|
|
index = collections.defaultdict(list) |
|
for ent in entities: |
|
for norm in ent["normalized"]: |
|
index[norm["db_id"]].append(ent) |
|
index = dict(index) |
|
|
|
|
|
rela_mentions = [] |
|
for rela in relations: |
|
arg1 = rela.infons["Chemical"] |
|
arg2 = rela.infons["Disease"] |
|
|
|
all_pairs = itertools.product(index[arg1], index[arg2]) |
|
for a, b in all_pairs: |
|
|
|
rela_mentions.append( |
|
{ |
|
"id": None, |
|
"type": rela.infons["relation"], |
|
"arg1_id": a["id"], |
|
"arg2_id": b["id"], |
|
"normalized": [], |
|
} |
|
) |
|
return rela_mentions |
|
|
|
def _get_document_text(self, xdoc): |
|
"""Build document text for unit testing entity span offsets.""" |
|
text = "" |
|
for passage in xdoc.passages: |
|
pad = passage.offset - len(text) |
|
text += (" " * pad) + passage.text |
|
return text |
|
|
|
def _generate_examples( |
|
self, |
|
filepath, |
|
split, |
|
): |
|
"""Yields examples as (key, example) tuples.""" |
|
if self.config.schema == "source": |
|
reader = biocxml.BioCXMLDocumentReader(str(filepath)) |
|
|
|
for uid, xdoc in enumerate(reader): |
|
doc_text = self._get_document_text(xdoc) |
|
yield uid, { |
|
"passages": [ |
|
{ |
|
"document_id": xdoc.id, |
|
"type": passage.infons["type"], |
|
"text": passage.text, |
|
"entities": [ |
|
self._get_bioc_entity(span, doc_text) |
|
for span in passage.annotations |
|
], |
|
"relations": [ |
|
{ |
|
"id": rel.id, |
|
"type": rel.infons["relation"], |
|
"arg1_id": rel.infons["Chemical"], |
|
"arg2_id": rel.infons["Disease"], |
|
} |
|
for rel in xdoc.relations |
|
], |
|
} |
|
for passage in xdoc.passages |
|
] |
|
} |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
reader = biocxml.BioCXMLDocumentReader(str(filepath)) |
|
uid = 0 |
|
|
|
for i, xdoc in enumerate(reader): |
|
data = { |
|
"id": uid, |
|
"document_id": xdoc.id, |
|
"passages": [], |
|
"entities": [], |
|
"relations": [], |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
uid += 1 |
|
doc_text = self._get_document_text(xdoc) |
|
|
|
char_start = 0 |
|
|
|
for passage in xdoc.passages: |
|
offsets = [[char_start, char_start + len(passage.text)]] |
|
char_start = char_start + len(passage.text) + 1 |
|
data["passages"].append( |
|
{ |
|
"id": uid, |
|
"type": passage.infons["type"], |
|
"text": [passage.text], |
|
"offsets": offsets, |
|
} |
|
) |
|
uid += 1 |
|
|
|
|
|
for passage in xdoc.passages: |
|
for span in passage.annotations: |
|
ent = self._get_bioc_entity(span, doc_text, db_id_key="MESH") |
|
ent["id"] = uid |
|
data["entities"].append(ent) |
|
uid += 1 |
|
|
|
|
|
relations = self._get_relations(xdoc.relations, data["entities"]) |
|
for rela in relations: |
|
rela["id"] = uid |
|
data["relations"].append(rela) |
|
uid += 1 |
|
|
|
yield i, data |
|
|