|
|
|
"""Long-Term-Care-Aggregated-Data.ipynb |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/14YdgB8b4TtNetbHpTstGH7W4DLa3Yyxq |
|
""" |
|
|
|
from datasets import GeneratorBasedBuilder, DownloadManager, DatasetInfo, Array3D, BuilderConfig, SplitGenerator, Version |
|
from datasets.features import Features, Value, Sequence |
|
import datasets |
|
import pandas as pd |
|
import json |
|
import zipfile |
|
from PIL import Image |
|
import numpy as np |
|
import io |
|
import csv |
|
import json |
|
import os |
|
from typing import List |
|
import datasets |
|
import logging |
|
|
|
_CITATION = """\ |
|
@misc{long_term_care_aggregated_dataset, |
|
title = {Long-Term Care Aggregated Dataset}, |
|
author = {Kao, Hsuan-Chen (Justin)}, |
|
year = {2024}, |
|
publisher = {Hugging Face}, |
|
url = {https://github.com/justinkao44/STA663_Project_1}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Long-Term Care Aggregated Dataset is a collection of insurance data for 'incidence' and 'termination' categories. |
|
It is compiled from Long Term Care insurance policies data, providing insights into trends and patterns in insurance claims |
|
and terminations. This dataset can be used for actuarial analysis, risk assessment, and to inform insurance product development. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/justinkao44/STA663_Project_1" |
|
|
|
_LICENSE = "Apache-2.0" |
|
|
|
_URLS = { |
|
"train_incidence": "https://raw.githubusercontent.com/justinkao44/STA663_Project_1/main/train_filtered_incidence_df.csv", |
|
"train_termination": "https://raw.githubusercontent.com/justinkao44/STA663_Project_1/main/train_filtered_termination_df.csv", |
|
"validation_incidence": "https://raw.githubusercontent.com/justinkao44/STA663_Project_1/main/validation_filtered_incidence_df.csv", |
|
"validation_termination": "https://raw.githubusercontent.com/justinkao44/STA663_Project_1/main/validation_filtered_termination_df.csv", |
|
} |
|
|
|
|
|
class LongTermCareAggregatedData(datasets.GeneratorBasedBuilder): |
|
"""Dataset for insurance 'incidence' and 'termination' data.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="incidence", version=datasets.Version("1.0.0"), description="This part of the dataset includes incidence features"), |
|
datasets.BuilderConfig(name="termination", version=datasets.Version("1.0.0"), description="This part of the dataset includes termination features"), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "incidence": |
|
features = datasets.Features({ |
|
"Group_Indicator": datasets.Value("string"), |
|
"Gender": datasets.Value("string"), |
|
"Issue_Age_Bucket": datasets.Value("string"), |
|
"Incurred_Age_Bucket": datasets.Value("string"), |
|
"Issue_Year_Bucket": datasets.Value("string"), |
|
"Policy_Year": datasets.Value("string"), |
|
"Marital_Status": datasets.Value("string"), |
|
"Premium_Class": datasets.Value("string"), |
|
"Underwriting_Type": datasets.Value("string"), |
|
"Coverage_Type_Bucket": datasets.Value("string"), |
|
"Tax_Qualification_Status": datasets.Value("string"), |
|
"Inflation_Rider": datasets.Value("string"), |
|
"Rate_Increase_Flag": datasets.Value("string"), |
|
"Restoration_of_Benefits": datasets.Value("string"), |
|
"NH_Orig_Daily_Ben_Bucket": datasets.Value("string"), |
|
"ALF_Orig_Daily_Ben_Bucket": datasets.Value("string"), |
|
"HHC_Orig_Daily_Ben_Bucket": datasets.Value("string"), |
|
"NH_Ben_Period_Bucket": datasets.Value("string"), |
|
"ALF_Ben_Period_Bucket": datasets.Value("string"), |
|
"HHC_Ben_Period_Bucket": datasets.Value("string"), |
|
"NH_EP_Bucket": datasets.Value("string"), |
|
"ALF_EP_Bucket": datasets.Value("string"), |
|
"HHC_EP_Bucket": datasets.Value("string"), |
|
"Region": datasets.Value("string"), |
|
"Active_Exposure": datasets.Value("float64"), |
|
"Total_Exposure": datasets.Value("float64"), |
|
"Claim_Count": datasets.Value("int32"), |
|
"Count_NH": datasets.Value("int32"), |
|
"Count_ALF": datasets.Value("int32"), |
|
"Count_HHC": datasets.Value("int32"), |
|
"Count_Unk": datasets.Value("int32"), |
|
}) |
|
elif self.config.name == "termination": |
|
features = datasets.Features({ |
|
"Gender": datasets.Value("string"), |
|
"Incurred_Age_Bucket": datasets.Value("string"), |
|
"Incurred_Year_Bucket": datasets.Value("string"), |
|
"Claim_Type": datasets.Value("string"), |
|
"Region": datasets.Value("string"), |
|
"Diagnosis_Category": datasets.Value("string"), |
|
"Claim_Duration": datasets.Value("int64"), |
|
"Exposure": datasets.Value("int64"), |
|
"Deaths": datasets.Value("int64"), |
|
"Recovery": datasets.Value("int64"), |
|
"Terminations": datasets.Value("int64"), |
|
"Benefit_Expiry": datasets.Value("int64"), |
|
"Others_Terminations": datasets.Value("int64"), |
|
}) |
|
else: |
|
raise ValueError(f"BuilderConfig name not recognized: {self.config.name}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage="https://www.soa.org/resources/experience-studies/2020/2000-2016-ltc-aggregate-database/", |
|
citation="Please cite this dataset as: Society of Actuaries (SOA). (2020). Long Term Care Insurance Aggregate Experience Data, 2000-2016." |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download(_URLS) |
|
|
|
|
|
train_file = downloaded_files[f"train_{self.config.name}"] |
|
validation_file = downloaded_files[f"validation_{self.config.name}"] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": train_file, |
|
"split": self.config.name, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": validation_file, |
|
"split": self.config.name, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file, split): |
|
|
|
dataframe = pd.read_csv(data_file) |
|
|
|
|
|
feature_columns = self._get_feature_columns_by_config() |
|
|
|
|
|
for idx, row in dataframe.iterrows(): |
|
feature_dict = {column: row[column] for column in feature_columns if column in dataframe.columns} |
|
yield idx, feature_dict |
|
|
|
def _get_feature_columns_by_config(self): |
|
if self.config.name == "incidence": |
|
return [ |
|
"Group_Indicator", "Gender", "Issue_Age_Bucket", "Incurred_Age_Bucket", |
|
"Issue_Year_Bucket", "Policy_Year", "Marital_Status", "Premium_Class", |
|
"Underwriting_Type", "Coverage_Type_Bucket", "Tax_Qualification_Status", |
|
"Inflation_Rider", "Rate_Increase_Flag", "Restoration_of_Benefits", |
|
"NH_Orig_Daily_Ben_Bucket", "ALF_Orig_Daily_Ben_Bucket", "HHC_Orig_Daily_Ben_Bucket", |
|
"NH_Ben_Period_Bucket", "ALF_Ben_Period_Bucket", "HHC_Ben_Period_Bucket", |
|
"NH_EP_Bucket", "ALF_EP_Bucket", "HHC_EP_Bucket", "Region", |
|
"Active_Exposure", "Total_Exposure", "Claim_Count", "Count_NH", "Count_ALF", "Count_HHC", "Count_Unk", |
|
] |
|
elif self.config.name == "termination": |
|
return [ |
|
"Gender", "Incurred_Age_Bucket", "Incurred_Year_Bucket", "Claim_Type", |
|
"Region", "Diagnosis_Category", "Claim_Duration", "Exposure", "Deaths", |
|
"Recovery", "Terminations", "Benefit_Expiry", "Others_Terminations", |
|
] |
|
else: |
|
raise ValueError(f"Config name not recognized: {self.config.name}") |