File size: 6,913 Bytes
5cd0931
 
 
b55a988
5cd0931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55a988
5cd0931
 
 
 
 
 
 
b55a988
5cd0931
 
b55a988
5cd0931
 
b55a988
 
 
5cd0931
b55a988
5cd0931
 
b55a988
 
 
5cd0931
b55a988
5cd0931
 
b55a988
 
 
5cd0931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55a988
5cd0931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55a988
5cd0931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55a988
5cd0931
 
b55a988
5cd0931
 
 
 
 
b55a988
 
 
 
 
 
 
5cd0931
b55a988
5cd0931
 
 
 
 
 
b55a988
5cd0931
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import datasets
import os

class Dbp15kFrEnConfig(datasets.BuilderConfig):

    def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs):
        """BuilderConfig for SuperGLUE.
        Args:
          features: `list[string]`, list of the features that will appear in the
            feature dict. Should not include "label".
          data_url: `string`, url to download the zip file from.
          citation: `string`, citation for the data set.
          url: `string`, url for information about the data set.
          label_classes: `list[string]`, the list of classes for the label if the
            label is present as a string. Non-string labels will be cast to either
            'False' or 'True'.
          **kwargs: keyword arguments forwarded to super.
        """
        # Version history:
        # 1.0.3: Fix not including entity position in ReCoRD.
        # 1.0.2: Fixed non-nondeterminism in ReCoRD.
        # 1.0.1: Change from the pre-release trial version of SuperGLUE (v1.9) to
        #        the full release (v2.0).
        # 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
        # 0.0.2: Initial version.
        super(Dbp15kFrEnConfig, self).__init__(version=datasets.Version("1.0.3"), **kwargs)
        self.features = features
        self.label_classes = label_classes
        self.data_url = data_url
        self.citation = citation
        self.url = url


class DBP15KFREN(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        Dbp15kFrEnConfig(
            name="source",
            features=["column1", "column2", "column3"],
            citation="TODO",
            url="TODO",
            data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-src.zip"
        ),
        Dbp15kFrEnConfig(
            name="target",
            features=["column1", "column2", "column3"],
            citation="TODO",
            url="TODO",
            data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-tgt.zip"
        ),
        Dbp15kFrEnConfig(
            name="pairs",
            features=["left_id", "right_id"],
            citation="TODO",
            url="TODO",
            data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-pairs.zip"
        ),
    ]

    def _info(self):
        features = {feature: datasets.Value("string") for feature in self.config.features}

        return datasets.DatasetInfo(
            features=datasets.Features(features)
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
        #task_name = _get_task_name_from_data_url(self.config.data_url)
        #dl_dir = os.path.join(dl_dir, task_name)
        if self.config.name == "source":
            return [
            datasets.SplitGenerator(
                name="ent_ids",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "ent_ids_1"),
                    "split": "ent_ids",
                },
            ),
            datasets.SplitGenerator(
                name="rel_ids",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "rel_ids_1"),
                    "split": "rel_ids",
                },
            ),
            datasets.SplitGenerator(
                name="attr_triples",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "att_triples_1"),
                    "split": "attr_triples",
                },
            ),
            datasets.SplitGenerator(
                name="rel_triples",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "triples_1"),
                    "split": "rel_triples",
                },
            ),
            ]
        elif self.config.name == "target":
            return [
            datasets.SplitGenerator(
                name="ent_ids",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "ent_ids_2"),
                    "split": "ent_ids",
                },
            ),
            datasets.SplitGenerator(
                name="rel_ids",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "rel_ids_2"),
                    "split": "rel_ids",
                },
            ),
            datasets.SplitGenerator(
                name="attr_triples",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "att_triples_2"),
                    "split": "attr_triples",
                },
            ),
            datasets.SplitGenerator(
                name="rel_triples",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "triples_2"),
                    "split": "rel_triples",
                },
            ),
            ]
        elif self.config.name == "pairs":
            return [
            datasets.SplitGenerator(
                name="train",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "sup_pairs"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name="test",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "ref_pairs"),
                    "split": "test",
                },
            ),
            ]


    def _generate_examples(self, data_file, split):
        f = open(data_file,"r",encoding='utf-8')
        data = f.readlines()
        for i in range(len(data)):
            #print(row)
            if self.config.name in ["source", "target"]:
                if split in ["ent_ids","rel_ids"]:
                    row = data[i].strip('\n').split('\t')
                    yield i, {
                                "column1": row[0],
                                "column2": row[1],
                                "column3": None
                            }
                elif split in ["rel_triples"]:
                    row = data[i].strip('\n').split('\t')
                    yield i, {
                                "column1": row[0],
                                "column2": row[1],
                                "column3": row[2]
                            }
                else:
                    row = data[i].strip('\n').split(' ')
                    yield i, {
                                "column1": row[0],
                                "column2": row[1],
                                "column3": row[2]
                            }
            if self.config.name == "pairs":
                row = data[i].strip('\n').split('\t')
                yield i, {
                            "left_id": row[0],
                            "right_id": row[1]
                }