File size: 6,913 Bytes
5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 b55a988 5cd0931 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import datasets
import os
class Dbp15kFrEnConfig(datasets.BuilderConfig):
def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs):
"""BuilderConfig for SuperGLUE.
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
data_url: `string`, url to download the zip file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
label_classes: `list[string]`, the list of classes for the label if the
label is present as a string. Non-string labels will be cast to either
'False' or 'True'.
**kwargs: keyword arguments forwarded to super.
"""
# Version history:
# 1.0.3: Fix not including entity position in ReCoRD.
# 1.0.2: Fixed non-nondeterminism in ReCoRD.
# 1.0.1: Change from the pre-release trial version of SuperGLUE (v1.9) to
# the full release (v2.0).
# 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
# 0.0.2: Initial version.
super(Dbp15kFrEnConfig, self).__init__(version=datasets.Version("1.0.3"), **kwargs)
self.features = features
self.label_classes = label_classes
self.data_url = data_url
self.citation = citation
self.url = url
class DBP15KFREN(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
Dbp15kFrEnConfig(
name="source",
features=["column1", "column2", "column3"],
citation="TODO",
url="TODO",
data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-src.zip"
),
Dbp15kFrEnConfig(
name="target",
features=["column1", "column2", "column3"],
citation="TODO",
url="TODO",
data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-tgt.zip"
),
Dbp15kFrEnConfig(
name="pairs",
features=["left_id", "right_id"],
citation="TODO",
url="TODO",
data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-pairs.zip"
),
]
def _info(self):
features = {feature: datasets.Value("string") for feature in self.config.features}
return datasets.DatasetInfo(
features=datasets.Features(features)
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
#task_name = _get_task_name_from_data_url(self.config.data_url)
#dl_dir = os.path.join(dl_dir, task_name)
if self.config.name == "source":
return [
datasets.SplitGenerator(
name="ent_ids",
gen_kwargs={
"data_file": os.path.join(dl_dir, "ent_ids_1"),
"split": "ent_ids",
},
),
datasets.SplitGenerator(
name="rel_ids",
gen_kwargs={
"data_file": os.path.join(dl_dir, "rel_ids_1"),
"split": "rel_ids",
},
),
datasets.SplitGenerator(
name="attr_triples",
gen_kwargs={
"data_file": os.path.join(dl_dir, "att_triples_1"),
"split": "attr_triples",
},
),
datasets.SplitGenerator(
name="rel_triples",
gen_kwargs={
"data_file": os.path.join(dl_dir, "triples_1"),
"split": "rel_triples",
},
),
]
elif self.config.name == "target":
return [
datasets.SplitGenerator(
name="ent_ids",
gen_kwargs={
"data_file": os.path.join(dl_dir, "ent_ids_2"),
"split": "ent_ids",
},
),
datasets.SplitGenerator(
name="rel_ids",
gen_kwargs={
"data_file": os.path.join(dl_dir, "rel_ids_2"),
"split": "rel_ids",
},
),
datasets.SplitGenerator(
name="attr_triples",
gen_kwargs={
"data_file": os.path.join(dl_dir, "att_triples_2"),
"split": "attr_triples",
},
),
datasets.SplitGenerator(
name="rel_triples",
gen_kwargs={
"data_file": os.path.join(dl_dir, "triples_2"),
"split": "rel_triples",
},
),
]
elif self.config.name == "pairs":
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"data_file": os.path.join(dl_dir, "sup_pairs"),
"split": "train",
},
),
datasets.SplitGenerator(
name="test",
gen_kwargs={
"data_file": os.path.join(dl_dir, "ref_pairs"),
"split": "test",
},
),
]
def _generate_examples(self, data_file, split):
f = open(data_file,"r",encoding='utf-8')
data = f.readlines()
for i in range(len(data)):
#print(row)
if self.config.name in ["source", "target"]:
if split in ["ent_ids","rel_ids"]:
row = data[i].strip('\n').split('\t')
yield i, {
"column1": row[0],
"column2": row[1],
"column3": None
}
elif split in ["rel_triples"]:
row = data[i].strip('\n').split('\t')
yield i, {
"column1": row[0],
"column2": row[1],
"column3": row[2]
}
else:
row = data[i].strip('\n').split(' ')
yield i, {
"column1": row[0],
"column2": row[1],
"column3": row[2]
}
if self.config.name == "pairs":
row = data[i].strip('\n').split('\t')
yield i, {
"left_id": row[0],
"right_id": row[1]
}
|