File size: 9,105 Bytes
5cd0931
 
7d6410b
5cd0931
b55a988
5cd0931
 
027a870
5cd0931
 
 
 
 
 
 
71349cc
5cd0931
 
b55a988
5cd0931
 
b55a988
 
 
5cd0931
b55a988
5cd0931
 
b55a988
 
 
5cd0931
b55a988
5cd0931
 
b55a988
 
 
5cd0931
 
 
 
d3fedd5
 
 
 
 
f8c6b11
d3fedd5
5cd0931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55a988
5cd0931
 
 
 
 
 
 
 
 
 
a062d30
 
 
2cdfb4c
a062d30
 
 
70b637b
 
 
 
 
 
 
e8de9d0
779f055
e8de9d0
e2e397d
e8de9d0
 
 
5cd0931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55a988
5cd0931
 
 
 
 
 
 
 
 
 
a062d30
 
 
2cdfb4c
a062d30
 
 
70b637b
 
 
 
 
 
 
e8de9d0
779f055
e8de9d0
e2e397d
e8de9d0
 
 
5cd0931
 
 
 
 
 
f8c6b11
5cd0931
 
 
1bdf84f
 
 
f8c6b11
1bdf84f
 
 
5cd0931
 
 
f8c6b11
5cd0931
 
 
f8c6b11
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd0931
 
 
 
7d6410b
bcc6f80
ac14605
7d6410b
ac14605
5cd0931
ac14605
 
7d6410b
5cd0931
7d6410b
 
 
 
 
 
a80999a
7d6410b
 
 
 
 
 
a80999a
7d6410b
 
 
 
 
 
e8de9d0
05e8420
7d6410b
 
 
 
 
0aa3afb
7d6410b
 
 
 
 
027a870
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import datasets
import os
import pickle

class Dbp15kFrEnConfig(datasets.BuilderConfig):

    def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs):
        super(Dbp15kFrEnConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs)
        self.features = features
        self.label_classes = label_classes
        self.data_url = data_url
        self.citation = citation
        self.url = url


class Dbp15kFrEn(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        Dbp15kFrEnConfig(
            name="source",
            features=["column1", "column2", "column3"],
            citation="TODO",
            url="TODO",
            data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-src.zip"
        ),
        Dbp15kFrEnConfig(
            name="target",
            features=["column1", "column2", "column3"],
            citation="TODO",
            url="TODO",
            data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-tgt.zip"
        ),
        Dbp15kFrEnConfig(
            name="pairs",
            features=["left_id", "right_id"],
            citation="TODO",
            url="TODO",
            data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-pairs.zip"
        ),
    ]

    def _info(self):
        if self.config.name=="source":
            features = {feature: datasets.Value("string") for feature in self.config.features}
        elif self.config.name=="target":
            features = {feature: datasets.Value("string") for feature in self.config.features}
        elif self.config.name=="pairs":
            features = {feature: datasets.Value("string") for feature in self.config.features}
        
        return datasets.DatasetInfo(
            features=datasets.Features(features)
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
        #task_name = _get_task_name_from_data_url(self.config.data_url)
        #dl_dir = os.path.join(dl_dir, task_name)
        if self.config.name == "source":
            return [
            datasets.SplitGenerator(
                name="ent_ids",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "ent_ids_1"),
                    "split": "ent_ids",
                },
            ),
            datasets.SplitGenerator(
                name="rel_ids",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "rel_ids_1"),
                    "split": "rel_ids",
                },
            ),
            datasets.SplitGenerator(
                name="attr_triples",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "att_triples_1"),
                    "split": "attr_triples",
                },
            ),
            datasets.SplitGenerator(
                name="rel_triples",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "triples_1"),
                    "split": "rel_triples",
                },
            ),
            datasets.SplitGenerator(
                name="description",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "description1.pkl"),
                    "split": "description",
                },
            ),
            datasets.SplitGenerator(
                name="rel_triples_whole",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "rel_triples_whole_1"),
                    "split": "rel_triples_whole",
                },
            ),
            datasets.SplitGenerator(
                name="attr_triples_whole",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "att_triples_whole_1"),
                    "split": "attr_triples_whole",
                },
            ),
            ]
        elif self.config.name == "target":
            return [
            datasets.SplitGenerator(
                name="ent_ids",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "ent_ids_2"),
                    "split": "ent_ids",
                },
            ),
            datasets.SplitGenerator(
                name="rel_ids",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "rel_ids_2"),
                    "split": "rel_ids",
                },
            ),
            datasets.SplitGenerator(
                name="attr_triples",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "att_triples_2"),
                    "split": "attr_triples",
                },
            ),
            datasets.SplitGenerator(
                name="rel_triples",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "triples_2"),
                    "split": "rel_triples",
                },
            ),
            datasets.SplitGenerator(
                name="description",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "description2.pkl"),
                    "split": "description",
                },
            ),
            datasets.SplitGenerator(
                name="rel_triples_whole",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "rel_triples_whole_2"),
                    "split": "rel_triples_whole",
                },
            ),
            datasets.SplitGenerator(
                name="attr_triples_whole",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "att_triples_whole_2"),
                    "split": "attr_triples_whole",
                },
            ),
            ]
        elif self.config.name == "pairs":
            return [
            datasets.SplitGenerator(
                name="train",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "train_links"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name="valid",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "valid_links"),
                    "split": "valid",
                },
            ),
            datasets.SplitGenerator(
                name="test",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "test_links"),
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name="sup",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "sup_pairs"),
                    "split": "sup",
                },
            ),
            datasets.SplitGenerator(
                name="ref",
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "ref_pairs"),
                    "split": "ref",
                },
            ),
            ]


    def _generate_examples(self, data_file, split):
        if split in ["description"]:
            des = pickle.load(open(data_file,"rb"))
            i = -1
            for ent,ori_des in des.items():
                i += 1
                yield i, {
                    "column1": ent,
                    "column2": ori_des,
                    "column3": None
                }
        else:
            f = open(data_file,"r",encoding='utf-8')
            data = f.readlines()
            for i in range(len(data)):
                #print(row)
                if self.config.name in ["source", "target"]:
                    if split in ["ent_ids","rel_ids"]:
                        row = data[i].strip('\n').split('\t')
                        yield i, {
                                    "column1": row[0],
                                    "column2": row[1],
                                    "column3": None
                                }
                    elif split in ["rel_triples","rel_triples_whole"]:
                        row = data[i].strip('\n').split('\t')
                        yield i, {
                                    "column1": row[0],
                                    "column2": row[1],
                                    "column3": row[2]
                                }
                    elif split in ["attr_triples","attr_triples_whole"]:
                        row = data[i].rstrip('\n').split(' ',2)
                        yield i, {
                                    "column1": row[0],
                                    "column2": row[1],
                                    "column3": row[2]
                                }
                        
                if self.config.name == "pairs":
                    row = data[i].strip('\n').split('\t')
                    yield i, {
                                "left_id": row[0],
                                "right_id": row[1]
                    }