|
import datasets |
|
import os |
|
import pickle |
|
|
|
class Dbp15kFrEnConfig(datasets.BuilderConfig): |
|
|
|
def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs): |
|
"""BuilderConfig for SuperGLUE. |
|
Args: |
|
features: `list[string]`, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
data_url: `string`, url to download the zip file from. |
|
citation: `string`, citation for the data set. |
|
url: `string`, url for information about the data set. |
|
label_classes: `list[string]`, the list of classes for the label if the |
|
label is present as a string. Non-string labels will be cast to either |
|
'False' or 'True'. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
super(Dbp15kFrEnConfig, self).__init__(version=datasets.Version("1.0.3"), **kwargs) |
|
self.features = features |
|
self.label_classes = label_classes |
|
self.data_url = data_url |
|
self.citation = citation |
|
self.url = url |
|
|
|
|
|
class Dbp15kFrEn(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
Dbp15kFrEnConfig( |
|
name="source", |
|
features=["column1", "column2", "column3"], |
|
citation="TODO", |
|
url="TODO", |
|
data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-src.zip" |
|
), |
|
Dbp15kFrEnConfig( |
|
name="target", |
|
features=["column1", "column2", "column3"], |
|
citation="TODO", |
|
url="TODO", |
|
data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-tgt.zip" |
|
), |
|
Dbp15kFrEnConfig( |
|
name="pairs", |
|
features=["left_id", "right_id"], |
|
citation="TODO", |
|
url="TODO", |
|
data_url="https://huggingface.co/datasets/matchbench/dbp15k-fr-en/resolve/main/dbp15k-fr-en-pairs.zip" |
|
), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name=="source": |
|
features = {feature: datasets.Value("string") for feature in self.config.features} |
|
elif self.config.name=="target": |
|
features = {feature: datasets.Value("string") for feature in self.config.features} |
|
elif self.config.name=="pairs": |
|
features = {feature: datasets.Value("int32") for feature in self.config.features} |
|
|
|
return datasets.DatasetInfo( |
|
features=datasets.Features(features) |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(self.config.data_url) or "" |
|
|
|
|
|
if self.config.name == "source": |
|
return [ |
|
datasets.SplitGenerator( |
|
name="ent_ids", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "ent_ids_1"), |
|
"split": "ent_ids", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="rel_ids", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "rel_ids_1"), |
|
"split": "rel_ids", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="attr_triples", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "att_triples_1"), |
|
"split": "attr_triples", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="rel_triples", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "triples_1"), |
|
"split": "rel_triples", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="description", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "description1"), |
|
"split": "description", |
|
}, |
|
), |
|
] |
|
elif self.config.name == "target": |
|
return [ |
|
datasets.SplitGenerator( |
|
name="ent_ids", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "ent_ids_2"), |
|
"split": "ent_ids", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="rel_ids", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "rel_ids_2"), |
|
"split": "rel_ids", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="attr_triples", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "att_triples_2"), |
|
"split": "attr_triples", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="rel_triples", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "triples_2"), |
|
"split": "rel_triples", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="description", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "description2"), |
|
"split": "description", |
|
}, |
|
), |
|
] |
|
elif self.config.name == "pairs": |
|
return [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "sup_pairs"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="test", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "ref_pairs"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, data_file, split): |
|
if split in ["description"]: |
|
des = pickle.load(open(data_file,"rb")) |
|
for ent,ori_des in des.items(): |
|
yield i, { |
|
"column1": row[0], |
|
"column2": row[1], |
|
"column3": None |
|
} |
|
else: |
|
f = open(data_file,"r",encoding='utf-8') |
|
data = f.readlines() |
|
for i in range(len(data)): |
|
|
|
if self.config.name in ["source", "target"]: |
|
if split in ["ent_ids","rel_ids"]: |
|
row = data[i].strip('\n').split('\t') |
|
yield i, { |
|
"column1": row[0], |
|
"column2": row[1], |
|
"column3": None |
|
} |
|
elif split in ["rel_triples"]: |
|
row = data[i].strip('\n').split('\t') |
|
yield i, { |
|
"column1": row[0], |
|
"column2": row[1], |
|
"column3": row[2] |
|
} |
|
else: |
|
row = data[i].strip('\n').split(' ') |
|
yield i, { |
|
"column1": row[0], |
|
"column2": row[1], |
|
"column3": row[2] |
|
} |
|
if self.config.name == "pairs": |
|
row = data[i].strip('\n').split('\t') |
|
yield i, { |
|
"left_id": row[0], |
|
"right_id": row[1] |
|
} |
|
|