File size: 6,540 Bytes
3d79089 8d35ec4 3d79089 8d35ec4 3d79089 8d35ec4 3d79089 8d35ec4 3d79089 8d35ec4 3d79089 8d35ec4 3d79089 8d35ec4 3d79089 8d35ec4 3d79089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import datasets
import os
import pickle
import json
class Dwy100kDWConfig(datasets.BuilderConfig):
def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs):
super(Dwy100kDWConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs)
self.features = features
self.label_classes = label_classes
self.data_url = data_url
self.citation = citation
self.url = url
class Dwy100kDW(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
Dwy100kDWConfig(
name="source",
features=["column1", "column2", "column3"],
citation="TODO",
url="TODO",
data_url="https://huggingface.co/datasets/matchbench/dwy100k-d-w/resolve/main/dwy-dbp-wd-100k.zip"
),
Dwy100kDWConfig(
name="target",
features=["column1", "column2", "column3"],
citation="TODO",
url="TODO",
data_url="https://huggingface.co/datasets/matchbench/dwy100k-d-w/resolve/main/dwy-dbp-wd-100k.zip"
),
Dwy100kDWConfig(
name="pairs",
features=["left_id", "right_id"],
citation="TODO",
url="TODO",
data_url="https://huggingface.co/datasets/matchbench/dwy100k-d-w/resolve/main/dwy-dbp-wd-100k.zip"
),
]
def _info(self):
if self.config.name=="source":
features = {feature: datasets.Value("string") for feature in self.config.features}
elif self.config.name=="target":
features = {feature: datasets.Value("string") for feature in self.config.features}
elif self.config.name=="pairs":
features = {feature: datasets.Value("string") for feature in self.config.features}
return datasets.DatasetInfo(
features=datasets.Features(features)
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
#task_name = _get_task_name_from_data_url(self.config.data_url)
#dl_dir = os.path.join(dl_dir, task_name)
if self.config.name == "source":
return [
datasets.SplitGenerator(
name="ent_ids",
gen_kwargs={
"data_file": os.path.join(dl_dir, "ent_ids_1"),
"split": "ent_ids",
},
),
datasets.SplitGenerator(
name="rel_triples_id",
gen_kwargs={
"data_file": os.path.join(dl_dir, "triples_1"),
"split": "rel_triples_id",
},
),
]
elif self.config.name == "target":
return [
datasets.SplitGenerator(
name="ent_ids",
gen_kwargs={
"data_file": os.path.join(dl_dir, "ent_ids_2"),
"split": "ent_ids",
},
),
datasets.SplitGenerator(
name="rel_triples_id",
gen_kwargs={
"data_file": os.path.join(dl_dir, "triples_2"),
"split": "rel_triples_id",
},
)
]
elif self.config.name == "pairs":
return [
datasets.SplitGenerator(
name="train",
gen_kwargs={
"data_file": os.path.join(dl_dir, "train_ent_ids"),
"split": "train",
},
),
datasets.SplitGenerator(
name="valid",
gen_kwargs={
"data_file": os.path.join(dl_dir, "valid_ent_ids"),
"split": "valid",
},
),
datasets.SplitGenerator(
name="test",
gen_kwargs={
"data_file": os.path.join(dl_dir, "ref_ent_ids"),
"split": "test",
},
),
datasets.SplitGenerator(
name="sup",
gen_kwargs={
"data_file": os.path.join(dl_dir, "sup_ent_ids"),
"split": "sup",
},
),
datasets.SplitGenerator(
name="ref",
gen_kwargs={
"data_file": os.path.join(dl_dir, "ref_ent_ids"),
"split": "ref",
},
),
]
def _generate_examples(self, data_file, split):
if split in ["translated_name"]:
trans = json.load(open(data_file,"r"))
#i = -1
for i in range(len(trans)):
yield i, {
"column1": str(trans[i][0]),
"column2": str(trans[i][1]),
"column3": None
}
else:
f = open(data_file,"r",encoding='utf-8')
data = f.readlines()
for i in range(len(data)):
#print(row)
if self.config.name in ["source", "target"]:
if split in ["ent_ids","rel_ids"]:
row = data[i].strip('\n').split('\t')
yield i, {
"column1": row[0],
"column2": row[1],
"column3": None
}
elif split in ["rel_triples_id","rel_triples_whole","rel_triples_name"]:
row = data[i].strip('\n').split('\t')
yield i, {
"column1": row[0],
"column2": row[1],
"column3": row[2]
}
elif split in ["attr_triples"]:
row = data[i].rstrip('\n').split('\t')
yield i, {
"column1": row[0],
"column2": row[1],
"column3": row[2]
}
if self.config.name == "pairs":
row = data[i].strip('\n').split('\t')
yield i, {
"left_id": row[0],
"right_id": row[1]
} |