|
import json |
|
import os |
|
import pickle |
|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_SUBFIELD = "yg" |
|
|
|
_VERSION = "1.0.0" |
|
|
|
_DESCRIPTION = """\ |
|
DWY100k-yg is a large-scale monolingual dataset extracted from DBpedia and YAGO3. The suffix yg means DBpedia |
|
to YAGO3. And DWY100k-yg has 100,000 reference entity alignments. |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{sun2018bootstrapping, |
|
title={Bootstrapping Entity Alignment with Knowledge Graph Embedding.}, |
|
author={Sun, Zequn and Hu, Wei and Zhang, Qingheng and Qu, Yuzhong}, |
|
booktitle={IJCAI}, |
|
volume={18}, |
|
pages={4396--4402}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_URL = "https://dl.acm.org/doi/10.1145/3485447.3511945" |
|
|
|
_PREFIX = "https://huggingface.co/datasets/matchbench/selfkg-dwy100k-dbpyg" |
|
|
|
_URLS = { |
|
"source": f"{_PREFIX}/resolve/main/selfkg-dwy100k-dbp{_SUBFIELD}-src.zip", |
|
"target": f"{_PREFIX}/resolve/main/selfkg-dwy100k-dbp{_SUBFIELD}-tgt.zip", |
|
"pairs": f"{_PREFIX}/resolve/main/selfkg-dwy100k-dbp{_SUBFIELD}-pairs.zip", |
|
} |
|
|
|
class SelfkgDwy100kygConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Selfkg-DWY100k.""" |
|
|
|
def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs): |
|
""" |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(SelfkgDwy100kygConfig, self).__init__(**kwargs) |
|
self.features = features |
|
self.label_classes = label_classes |
|
self.data_url = data_url |
|
self.citation = citation |
|
self.url = url |
|
|
|
class DWY100kYg(datasets.GeneratorBasedBuilder): |
|
"""DWY100k-yg: A Entity Alignment Dataset. From DBpedia to YAGO3.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SelfkgDwy100kygConfig( |
|
name="source", |
|
features=["column1", "column2", "column3"], |
|
citation="TODO", |
|
url="TODO", |
|
data_url="https://huggingface.co/datasets/matchbench/selfkg-dwy100k-dbpyg/resolve/main/selfkg-dwy100k-dbpyg.zip" |
|
), |
|
SelfkgDwy100kygConfig( |
|
name="target", |
|
features=["column1", "column2", "column3"], |
|
citation="TODO", |
|
url="TODO", |
|
data_url="https://huggingface.co/datasets/matchbench/selfkg-dwy100k-dbpyg/resolve/main/selfkg-dwy100k-dbpyg.zip" |
|
), |
|
SelfkgDwy100kygConfig( |
|
name="pairs", |
|
features=["left_id","right_id"], |
|
citation="TODO", |
|
url="TODO", |
|
data_url="https://huggingface.co/datasets/matchbench/selfkg-dwy100k-dbpyg/resolve/main/selfkg-dwy100k-dbpyg.zip" |
|
) |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.name=="source": |
|
features = {feature: datasets.Value("string") for feature in self.config.features} |
|
elif self.config.name=="target": |
|
features = {feature: datasets.Value("string") for feature in self.config.features} |
|
elif self.config.name=="pairs": |
|
features = {feature: datasets.Value("int32") for feature in self.config.features} |
|
|
|
return datasets.DatasetInfo(description = _DESCRIPTION, |
|
features = datasets.Features(features)) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
dl_dir = dl_manager.download_and_extract(self.config.data_url) or "" |
|
if self.config.name == "source": |
|
return [ |
|
datasets.SplitGenerator( |
|
name="ent_ids", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "id_ent_1"), |
|
"split": "ent_ids", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="rel_triples_id", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "triples_1"), |
|
"split": "rel_triples", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="LaBSE_emb", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "raw_LaBSE_emb_1.pkl"), |
|
"split": "embedding", |
|
}, |
|
), |
|
] |
|
elif self.config.name == "target": |
|
return [ |
|
datasets.SplitGenerator( |
|
name="ent_ids", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "id_ent_2"), |
|
"split": "ent_ids", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="rel_triples_id", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "triples_2"), |
|
"split": "rel_triples", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="LaBSE_emb", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "raw_LaBSE_emb_2.pkl"), |
|
"split": "embedding", |
|
}, |
|
), |
|
] |
|
elif self.config.name == "pairs": |
|
return [ |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "ref_ent_ids"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="valid", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "valid.ref"), |
|
"split": "valid", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="test", |
|
gen_kwargs={ |
|
"data_file": os.path.join(dl_dir, "ref_ent_ids"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file, split): |
|
if split in ["LaBSE_emb"]: |
|
des = pickle.load(open(data_file,"rb")) |
|
i = -1 |
|
for ent,ori_emb in des.items(): |
|
i += 1 |
|
yield i, { |
|
"column1": ent, |
|
"column2": ori_emb, |
|
"column3": None |
|
} |
|
else: |
|
f = open(data_file,"r", encoding='utf-8') |
|
data = f.readlines() |
|
for i in range(len(data)): |
|
if self.config.name in ["source", "target"]: |
|
if split in ["ent_ids", "rel_ids"]: |
|
row = data[i].strip('\n').split('\t') |
|
yield i, { |
|
"id": row[0], |
|
"data": row[1], |
|
} |
|
elif split in ["rel_triples_id"]: |
|
row = data[i].strip('\n').split('\t') |
|
yield i, { |
|
"head_ent": row[0], |
|
"relation": row[1], |
|
"tail_ent": row[2] |
|
} |
|
if self.config.name == "pairs": |
|
row = data[i].strip('\n').split('\t') |
|
yield i, { |
|
"left_id": row[0], |
|
"right_id": row[1] |
|
} |
|
|