File size: 3,709 Bytes
4198834
bc39c75
3518503
 
 
 
 
 
4198834
3518503
 
 
 
 
 
 
 
 
 
 
 
 
eea5e83
3518503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b64763
 
 
 
 
 
3518503
 
 
a39ae99
 
 
3518503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5fe10
3518503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba5fe10
3518503
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: cc-by-4.0
task_categories:
- text-classification
language:
- fr
size_categories:
- n<1K
---

# Dataset Card for Dataset Name

## Dataset Description

- **Homepage:** 
- **Repository:** 
- **Paper:** 
- **Leaderboard:** 
- **Point of Contact:** 

### Dataset Summary

This repository contains a French version of the [GQNLI](https://github.com/ruixiangcui/GQNLI) challenge dataset, originally written in English. GQNLI is an evaluation corpus that is aimed for testing language model's generalized quantifier reasoning ability.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

[More Information Needed]

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

- `uid`: Index number.
- `premise`: The translated premise in the target language.
- `hypothesis`: The translated premise in the target language.
- `label`: The classification label, with possible values `entailment` (0), `neutral` (1), `contradiction` (2).
- `premise_original`: The original premise from the English source dataset.
- `hypothesis_original`: The original hypothesis from the English source dataset.

### Data Splits

|     name    |entailment|neutral|contradiction|
|-------------|---------:|------:|------------:|
|     test    |    97    |  100  |     103     |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@inproceedings{cui-etal-2022-generalized-quantifiers,
    title = "Generalized Quantifiers as a Source of Error in Multilingual {NLU} Benchmarks",
    author = "Cui, Ruixiang  and
      Hershcovich, Daniel  and
      S{\o}gaard, Anders",
    booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jul,
    year = "2022",
    address = "Seattle, United States",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.naacl-main.359",
    doi = "10.18653/v1/2022.naacl-main.359",
    pages = "4875--4893",
    abstract = "Logical approaches to representing language have developed and evaluated computational models of quantifier words since the 19th century, but today{'}s NLU models still struggle to capture their semantics. We rely on Generalized Quantifier Theory for language-independent representations of the semantics of quantifier words, to quantify their contribution to the errors of NLU models. We find that quantifiers are pervasive in NLU benchmarks, and their occurrence at test time is associated with performance drops. Multilingual models also exhibit unsatisfying quantifier reasoning abilities, but not necessarily worse for non-English languages. To facilitate directly-targeted probing, we present an adversarial generalized quantifier NLI task (GQNLI) and show that pre-trained language models have a clear lack of robustness in generalized quantifier reasoning.",
}
```

### Contributions

[More Information Needed]