Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -29,16 +29,8 @@ This repository contains a manually translated French version of the [GQNLI](htt
|
|
29 |
|
30 |
This dataset can be used for the task of Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), which is a sentence-pair classification task.
|
31 |
|
32 |
-
### Languages
|
33 |
-
|
34 |
-
[More Information Needed]
|
35 |
-
|
36 |
## Dataset Structure
|
37 |
|
38 |
-
### Data Instances
|
39 |
-
|
40 |
-
[More Information Needed]
|
41 |
-
|
42 |
### Data Fields
|
43 |
|
44 |
- `uid`: Index number.
|
@@ -55,60 +47,8 @@ This dataset can be used for the task of Natural Language Inference (NLI), also
|
|
55 |
|-------------|---------:|------:|------------:|
|
56 |
| test | 97 | 100 | 103 |
|
57 |
|
58 |
-
## Dataset Creation
|
59 |
-
|
60 |
-
### Curation Rationale
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Source Data
|
65 |
-
|
66 |
-
#### Initial Data Collection and Normalization
|
67 |
-
|
68 |
-
[More Information Needed]
|
69 |
-
|
70 |
-
#### Who are the source language producers?
|
71 |
-
|
72 |
-
[More Information Needed]
|
73 |
-
|
74 |
-
### Annotations
|
75 |
-
|
76 |
-
#### Annotation process
|
77 |
-
|
78 |
-
[More Information Needed]
|
79 |
-
|
80 |
-
#### Who are the annotators?
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Personal and Sensitive Information
|
85 |
-
|
86 |
-
[More Information Needed]
|
87 |
-
|
88 |
-
## Considerations for Using the Data
|
89 |
-
|
90 |
-
### Social Impact of Dataset
|
91 |
-
|
92 |
-
[More Information Needed]
|
93 |
-
|
94 |
-
### Discussion of Biases
|
95 |
-
|
96 |
-
[More Information Needed]
|
97 |
-
|
98 |
-
### Other Known Limitations
|
99 |
-
|
100 |
-
[More Information Needed]
|
101 |
-
|
102 |
## Additional Information
|
103 |
|
104 |
-
### Dataset Curators
|
105 |
-
|
106 |
-
[More Information Needed]
|
107 |
-
|
108 |
-
### Licensing Information
|
109 |
-
|
110 |
-
[More Information Needed]
|
111 |
-
|
112 |
### Citation Information
|
113 |
|
114 |
**BibTeX:**
|
@@ -137,8 +77,4 @@ Ruixiang Cui, Daniel Hershcovich, and Anders Søgaard. 2022. [Generalized Quanti
|
|
137 |
|
138 |
### Acknowledgements
|
139 |
|
140 |
-
This work was supported by the Defence Innovation Agency (AID) of the Directorate General of Armament (DGA) of the French Ministry of Armed Forces, and by the ICO, _Institut Cybersécurité Occitanie_, funded by Région Occitanie, France.
|
141 |
-
|
142 |
-
### Contributions
|
143 |
-
|
144 |
-
[More Information Needed]
|
|
|
29 |
|
30 |
This dataset can be used for the task of Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), which is a sentence-pair classification task.
|
31 |
|
|
|
|
|
|
|
|
|
32 |
## Dataset Structure
|
33 |
|
|
|
|
|
|
|
|
|
34 |
### Data Fields
|
35 |
|
36 |
- `uid`: Index number.
|
|
|
47 |
|-------------|---------:|------:|------------:|
|
48 |
| test | 97 | 100 | 103 |
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
## Additional Information
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
### Citation Information
|
53 |
|
54 |
**BibTeX:**
|
|
|
77 |
|
78 |
### Acknowledgements
|
79 |
|
80 |
+
This work was supported by the Defence Innovation Agency (AID) of the Directorate General of Armament (DGA) of the French Ministry of Armed Forces, and by the ICO, _Institut Cybersécurité Occitanie_, funded by Région Occitanie, France.
|
|
|
|
|
|
|
|