maximoss commited on
Commit
a2208e0
1 Parent(s): b15e300

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -65
README.md CHANGED
@@ -29,16 +29,8 @@ This repository contains a manually translated French version of the [GQNLI](htt
29
 
30
  This dataset can be used for the task of Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), which is a sentence-pair classification task.
31
 
32
- ### Languages
33
-
34
- [More Information Needed]
35
-
36
  ## Dataset Structure
37
 
38
- ### Data Instances
39
-
40
- [More Information Needed]
41
-
42
  ### Data Fields
43
 
44
  - `uid`: Index number.
@@ -55,60 +47,8 @@ This dataset can be used for the task of Natural Language Inference (NLI), also
55
  |-------------|---------:|------:|------------:|
56
  | test | 97 | 100 | 103 |
57
 
58
- ## Dataset Creation
59
-
60
- ### Curation Rationale
61
-
62
- [More Information Needed]
63
-
64
- ### Source Data
65
-
66
- #### Initial Data Collection and Normalization
67
-
68
- [More Information Needed]
69
-
70
- #### Who are the source language producers?
71
-
72
- [More Information Needed]
73
-
74
- ### Annotations
75
-
76
- #### Annotation process
77
-
78
- [More Information Needed]
79
-
80
- #### Who are the annotators?
81
-
82
- [More Information Needed]
83
-
84
- ### Personal and Sensitive Information
85
-
86
- [More Information Needed]
87
-
88
- ## Considerations for Using the Data
89
-
90
- ### Social Impact of Dataset
91
-
92
- [More Information Needed]
93
-
94
- ### Discussion of Biases
95
-
96
- [More Information Needed]
97
-
98
- ### Other Known Limitations
99
-
100
- [More Information Needed]
101
-
102
  ## Additional Information
103
 
104
- ### Dataset Curators
105
-
106
- [More Information Needed]
107
-
108
- ### Licensing Information
109
-
110
- [More Information Needed]
111
-
112
  ### Citation Information
113
 
114
  **BibTeX:**
@@ -137,8 +77,4 @@ Ruixiang Cui, Daniel Hershcovich, and Anders Søgaard. 2022. [Generalized Quanti
137
 
138
  ### Acknowledgements
139
 
140
- This work was supported by the Defence Innovation Agency (AID) of the Directorate General of Armament (DGA) of the French Ministry of Armed Forces, and by the ICO, _Institut Cybersécurité Occitanie_, funded by Région Occitanie, France.
141
-
142
- ### Contributions
143
-
144
- [More Information Needed]
 
29
 
30
  This dataset can be used for the task of Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), which is a sentence-pair classification task.
31
 
 
 
 
 
32
  ## Dataset Structure
33
 
 
 
 
 
34
  ### Data Fields
35
 
36
  - `uid`: Index number.
 
47
  |-------------|---------:|------:|------------:|
48
  | test | 97 | 100 | 103 |
49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
  ## Additional Information
51
 
 
 
 
 
 
 
 
 
52
  ### Citation Information
53
 
54
  **BibTeX:**
 
77
 
78
  ### Acknowledgements
79
 
80
+ This work was supported by the Defence Innovation Agency (AID) of the Directorate General of Armament (DGA) of the French Ministry of Armed Forces, and by the ICO, _Institut Cybersécurité Occitanie_, funded by Région Occitanie, France.