wjbmattingly
commited on
Upload convert.ipynb
Browse files- convert.ipynb +419 -73
convert.ipynb
CHANGED
@@ -2,133 +2,479 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
9 |
"import pandas as pd\n",
|
10 |
"import glob\n",
|
11 |
-
"import
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
]
|
17 |
},
|
18 |
{
|
19 |
"cell_type": "code",
|
20 |
-
"execution_count":
|
21 |
"metadata": {},
|
22 |
"outputs": [],
|
23 |
"source": [
|
24 |
-
"def
|
25 |
-
"
|
26 |
-
" data = pd.read_excel(file_path)\n",
|
27 |
-
" # if \"Line_ID\" in data.columns:\n",
|
28 |
-
" # group_col = \"Line_ID\"\n",
|
29 |
-
" if \"ACT\" in data.columns:\n",
|
30 |
" group_col = \"ACT\"\n",
|
31 |
-
" elif \"Original_Act_ID\" in
|
32 |
" group_col = \"Original_Act_ID\"\n",
|
33 |
" else:\n",
|
34 |
" \"unknown\"\n",
|
35 |
-
"
|
36 |
-
"
|
37 |
-
"
|
|
|
|
|
38 |
" \n",
|
39 |
" # Combine words into sentences, assumed by unique 'Line_ID'\n",
|
40 |
-
" grouped_data =
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
" \n",
|
42 |
-
"
|
43 |
-
"
|
44 |
-
"
|
45 |
-
"
|
46 |
-
"
|
47 |
-
" tokens = item[\"Word_x\"].tolist()\n",
|
48 |
-
" doc = Doc(nlp.vocab, words=tokens, spaces=[True for i in range(len(tokens))])\n",
|
49 |
-
" # doc = nlp(\" \".join(tokens))\n",
|
50 |
"\n",
|
51 |
-
"
|
52 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
"\n",
|
55 |
-
"
|
56 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
"\n",
|
58 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
" doc.spans[\"sc\"] = spans\n",
|
60 |
-
"
|
61 |
-
"
|
62 |
-
"
|
63 |
-
"
|
64 |
-
" return
|
65 |
]
|
66 |
},
|
67 |
{
|
68 |
"cell_type": "code",
|
69 |
-
"execution_count":
|
70 |
"metadata": {},
|
71 |
"outputs": [
|
72 |
{
|
73 |
-
"name": "
|
74 |
"output_type": "stream",
|
75 |
"text": [
|
76 |
-
"17\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
]
|
78 |
}
|
79 |
],
|
80 |
"source": [
|
81 |
-
"
|
82 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
]
|
84 |
},
|
85 |
{
|
86 |
"cell_type": "code",
|
87 |
-
"execution_count":
|
88 |
"metadata": {},
|
89 |
"outputs": [
|
90 |
{
|
91 |
-
"
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
}
|
113 |
],
|
114 |
"source": [
|
115 |
-
"
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
]
|
124 |
},
|
125 |
{
|
126 |
"cell_type": "code",
|
127 |
-
"execution_count":
|
128 |
"metadata": {},
|
129 |
"outputs": [],
|
130 |
"source": [
|
131 |
-
"srsly.write_jsonl(\"home-alcar-ner.jsonl\",
|
132 |
]
|
133 |
},
|
134 |
{
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
+
"import spacy\n",
|
10 |
"import pandas as pd\n",
|
11 |
"import glob\n",
|
12 |
+
"import tqdm"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 2,
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [
|
20 |
+
{
|
21 |
+
"name": "stdout",
|
22 |
+
"output_type": "stream",
|
23 |
+
"text": [
|
24 |
+
"17\n"
|
25 |
+
]
|
26 |
+
}
|
27 |
+
],
|
28 |
+
"source": [
|
29 |
+
"files = glob.glob(\"Database/*/CONLL/*.xlsx\")\n",
|
30 |
+
"print(len(files))"
|
31 |
]
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
+
"execution_count": 26,
|
36 |
"metadata": {},
|
37 |
"outputs": [],
|
38 |
"source": [
|
39 |
+
"def group_acts(df):\n",
|
40 |
+
" if \"ACT\" in df.columns:\n",
|
|
|
|
|
|
|
|
|
41 |
" group_col = \"ACT\"\n",
|
42 |
+
" elif \"Original_Act_ID\" in df.columns:\n",
|
43 |
" group_col = \"Original_Act_ID\"\n",
|
44 |
" else:\n",
|
45 |
" \"unknown\"\n",
|
46 |
+
"\n",
|
47 |
+
" if \"LANG\" in df.columns:\n",
|
48 |
+
" df = df[df[\"LANG\"] == \"LAT\"]\n",
|
49 |
+
"\n",
|
50 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
51 |
" \n",
|
52 |
" # Combine words into sentences, assumed by unique 'Line_ID'\n",
|
53 |
+
" grouped_data = df.groupby(group_col)\n",
|
54 |
+
"\n",
|
55 |
+
" return grouped_data\n",
|
56 |
+
"\n",
|
57 |
+
"def create_spacy_doc(df, nlp):\n",
|
58 |
+
" grouped_df = group_acts(df)\n",
|
59 |
+
" docs = []\n",
|
60 |
" \n",
|
61 |
+
" for key, group in grouped_df:\n",
|
62 |
+
" tokens = []\n",
|
63 |
+
" spaces = []\n",
|
64 |
+
" entities = []\n",
|
65 |
+
" current_entity = None\n",
|
|
|
|
|
|
|
66 |
"\n",
|
67 |
+
" # Iterate over the rows in the group\n",
|
68 |
+
" for i, row in enumerate(group.itertuples()):\n",
|
69 |
+
" word = row.Word_x\n",
|
70 |
+
" length_word = len(word)\n",
|
71 |
+
" # Check if there is a next word and whether it should be followed by a space\n",
|
72 |
+
" space_after = not (i < len(group) - 1 and group.iloc[i + 1].Word_x in [',', '.', ';', ':'])\n",
|
73 |
+
" tokens.append(word)\n",
|
74 |
+
" spaces.append(space_after)\n",
|
75 |
"\n",
|
76 |
+
" # Handle entity recognition\n",
|
77 |
+
" if row.PERS_x != 'O':\n",
|
78 |
+
" entity_type = 'PERSON'\n",
|
79 |
+
" elif row.LOC_x != 'O':\n",
|
80 |
+
" entity_type = 'LOC'\n",
|
81 |
+
" else:\n",
|
82 |
+
" entity_type = None\n",
|
83 |
"\n",
|
84 |
+
" if current_entity is None and entity_type is not None:\n",
|
85 |
+
" # Start new entity\n",
|
86 |
+
" current_entity = [i, i, entity_type]\n",
|
87 |
+
" elif current_entity is not None:\n",
|
88 |
+
" if entity_type == current_entity[2]:\n",
|
89 |
+
" # Extend current entity\n",
|
90 |
+
" current_entity[1] = i\n",
|
91 |
+
" else:\n",
|
92 |
+
" # Finish current entity and add to entities list\n",
|
93 |
+
" entities.append(current_entity)\n",
|
94 |
+
" current_entity = [i, i, entity_type] if entity_type else None\n",
|
95 |
"\n",
|
96 |
+
" # Check if an entity is still open at the end of the group\n",
|
97 |
+
" if current_entity is not None:\n",
|
98 |
+
" entities.append(current_entity)\n",
|
99 |
+
"\n",
|
100 |
+
" # Create a spacy Doc object\n",
|
101 |
+
" doc = spacy.tokens.Doc(nlp.vocab, words=tokens, spaces=spaces)\n",
|
102 |
+
" # Get the sentencizer component from the pipeline\n",
|
103 |
+
" sentencizer = nlp.get_pipe(\"sentencizer\")\n",
|
104 |
+
"\n",
|
105 |
+
" # Apply the sentencizer to the Doc\n",
|
106 |
+
" sentencizer(doc)\n",
|
107 |
+
" # Create Span objects for the entities\n",
|
108 |
+
" spans = [doc.char_span(doc[ent[0]].idx, doc[ent[1]].idx + len(doc[ent[1]].text), label=ent[2])\n",
|
109 |
+
" for ent in entities if doc.char_span(doc[ent[0]].idx, doc[ent[1]].idx + len(doc[ent[1]].text), label=ent[2])]\n",
|
110 |
" doc.spans[\"sc\"] = spans\n",
|
111 |
+
" \n",
|
112 |
+
"\n",
|
113 |
+
" docs.append(doc)\n",
|
114 |
+
"\n",
|
115 |
+
" return docs\n"
|
116 |
]
|
117 |
},
|
118 |
{
|
119 |
"cell_type": "code",
|
120 |
+
"execution_count": 27,
|
121 |
"metadata": {},
|
122 |
"outputs": [
|
123 |
{
|
124 |
+
"name": "stderr",
|
125 |
"output_type": "stream",
|
126 |
"text": [
|
127 |
+
" 0%| | 0/17 [00:00<?, ?it/s]/var/folders/4f/ddlj81h90_n0_h5wwvjbd2b40000gn/T/ipykernel_8164/298127518.py:12: SettingWithCopyWarning: \n",
|
128 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
129 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
130 |
+
"\n",
|
131 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
132 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
133 |
+
" 6%|▌ | 1/17 [00:01<00:23, 1.45s/it]/var/folders/4f/ddlj81h90_n0_h5wwvjbd2b40000gn/T/ipykernel_8164/298127518.py:12: SettingWithCopyWarning: \n",
|
134 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
135 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
136 |
+
"\n",
|
137 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
138 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
139 |
+
" 12%|█▏ | 2/17 [00:03<00:26, 1.77s/it]/var/folders/4f/ddlj81h90_n0_h5wwvjbd2b40000gn/T/ipykernel_8164/298127518.py:12: SettingWithCopyWarning: \n",
|
140 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
141 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
142 |
+
"\n",
|
143 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
144 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
145 |
+
" 24%|██▎ | 4/17 [00:18<01:08, 5.30s/it]/var/folders/4f/ddlj81h90_n0_h5wwvjbd2b40000gn/T/ipykernel_8164/298127518.py:12: SettingWithCopyWarning: \n",
|
146 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
147 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
148 |
+
"\n",
|
149 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
150 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
151 |
+
" 29%|██▉ | 5/17 [00:26<01:15, 6.29s/it]/var/folders/4f/ddlj81h90_n0_h5wwvjbd2b40000gn/T/ipykernel_8164/298127518.py:12: SettingWithCopyWarning: \n",
|
152 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
153 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
154 |
+
"\n",
|
155 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
156 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
157 |
+
" 35%|███▌ | 6/17 [00:29<00:57, 5.25s/it]/var/folders/4f/ddlj81h90_n0_h5wwvjbd2b40000gn/T/ipykernel_8164/298127518.py:12: SettingWithCopyWarning: \n",
|
158 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
159 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
160 |
+
"\n",
|
161 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
162 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
163 |
+
" 41%|████ | 7/17 [00:30<00:38, 3.85s/it]/var/folders/4f/ddlj81h90_n0_h5wwvjbd2b40000gn/T/ipykernel_8164/298127518.py:12: SettingWithCopyWarning: \n",
|
164 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
165 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
166 |
+
"\n",
|
167 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
168 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
169 |
+
" 47%|████▋ | 8/17 [00:32<00:30, 3.43s/it]/var/folders/4f/ddlj81h90_n0_h5wwvjbd2b40000gn/T/ipykernel_8164/298127518.py:12: SettingWithCopyWarning: \n",
|
170 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
171 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
172 |
+
"\n",
|
173 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
174 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
175 |
+
" 53%|█████▎ | 9/17 [00:35<00:26, 3.30s/it]/var/folders/4f/ddlj81h90_n0_h5wwvjbd2b40000gn/T/ipykernel_8164/298127518.py:12: SettingWithCopyWarning: \n",
|
176 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
177 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
178 |
+
"\n",
|
179 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
180 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
181 |
+
" 76%|███████▋ | 13/17 [00:50<00:14, 3.51s/it]/var/folders/4f/ddlj81h90_n0_h5wwvjbd2b40000gn/T/ipykernel_8164/298127518.py:12: SettingWithCopyWarning: \n",
|
182 |
+
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
183 |
+
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
184 |
+
"\n",
|
185 |
+
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
186 |
+
" df['Word_x'] = df['Word_x'].astype(str).str.strip()\n",
|
187 |
+
"100%|██████████| 17/17 [01:06<00:00, 3.89s/it]\n"
|
188 |
]
|
189 |
}
|
190 |
],
|
191 |
"source": [
|
192 |
+
"\n",
|
193 |
+
"docs = []\n",
|
194 |
+
"nlp = spacy.blank(\"en\")\n",
|
195 |
+
"nlp.add_pipe(\"sentencizer\")\n",
|
196 |
+
"\n",
|
197 |
+
"for file in tqdm.tqdm(files):\n",
|
198 |
+
" df = pd.read_excel(file)\n",
|
199 |
+
" docs = docs+create_spacy_doc(df, nlp)"
|
200 |
]
|
201 |
},
|
202 |
{
|
203 |
"cell_type": "code",
|
204 |
+
"execution_count": 40,
|
205 |
"metadata": {},
|
206 |
"outputs": [
|
207 |
{
|
208 |
+
"data": {
|
209 |
+
"text/plain": [
|
210 |
+
"{'tokenized_text': ['In',\n",
|
211 |
+
" 'nomine',\n",
|
212 |
+
" 'Domini',\n",
|
213 |
+
" ',',\n",
|
214 |
+
" 'amen',\n",
|
215 |
+
" '.',\n",
|
216 |
+
" 'Ego',\n",
|
217 |
+
" 'Mauricius',\n",
|
218 |
+
" ',',\n",
|
219 |
+
" 'Dei',\n",
|
220 |
+
" 'gracia',\n",
|
221 |
+
" 'Parisiensis',\n",
|
222 |
+
" 'episcopus',\n",
|
223 |
+
" ',',\n",
|
224 |
+
" 'universitati',\n",
|
225 |
+
" 'presencium',\n",
|
226 |
+
" 'ac',\n",
|
227 |
+
" 'futurorum',\n",
|
228 |
+
" 'hujus',\n",
|
229 |
+
" 'pagine',\n",
|
230 |
+
" 'attestatione',\n",
|
231 |
+
" 'notificare',\n",
|
232 |
+
" 'curamus',\n",
|
233 |
+
" 'quod',\n",
|
234 |
+
" 'dominus',\n",
|
235 |
+
" 'Guido',\n",
|
236 |
+
" 'de',\n",
|
237 |
+
" 'Levies',\n",
|
238 |
+
" ',',\n",
|
239 |
+
" 'pia',\n",
|
240 |
+
" 'et',\n",
|
241 |
+
" 'honesta',\n",
|
242 |
+
" 'consideratione',\n",
|
243 |
+
" 'ductus',\n",
|
244 |
+
" ',',\n",
|
245 |
+
" 'ad',\n",
|
246 |
+
" 'edificandam',\n",
|
247 |
+
" 'quandam',\n",
|
248 |
+
" 'novellam',\n",
|
249 |
+
" 'plantationem',\n",
|
250 |
+
" ',',\n",
|
251 |
+
" 'amore',\n",
|
252 |
+
" 'Dei',\n",
|
253 |
+
" 'et',\n",
|
254 |
+
" 'remedio',\n",
|
255 |
+
" 'anime',\n",
|
256 |
+
" 'sue',\n",
|
257 |
+
" 'et',\n",
|
258 |
+
" 'animarum',\n",
|
259 |
+
" 'parentum',\n",
|
260 |
+
" 'predecessorum',\n",
|
261 |
+
" 'suorum',\n",
|
262 |
+
" ',',\n",
|
263 |
+
" 'fratribus',\n",
|
264 |
+
" 'ibi',\n",
|
265 |
+
" 'Deo',\n",
|
266 |
+
" 'servituris',\n",
|
267 |
+
" 'in',\n",
|
268 |
+
" 'perpetuam',\n",
|
269 |
+
" 'elemosinam',\n",
|
270 |
+
" 'donavit',\n",
|
271 |
+
" 'unam',\n",
|
272 |
+
" 'carrucam',\n",
|
273 |
+
" 'de',\n",
|
274 |
+
" 'terra',\n",
|
275 |
+
" 'quam',\n",
|
276 |
+
" 'emit',\n",
|
277 |
+
" 'des',\n",
|
278 |
+
" 'Fers',\n",
|
279 |
+
" 'Dasnois',\n",
|
280 |
+
" ',',\n",
|
281 |
+
" 'et',\n",
|
282 |
+
" 'de',\n",
|
283 |
+
" 'decima',\n",
|
284 |
+
" 'duas',\n",
|
285 |
+
" 'partes',\n",
|
286 |
+
" 'quas',\n",
|
287 |
+
" 'ab',\n",
|
288 |
+
" 'hiisdem',\n",
|
289 |
+
" 'emit',\n",
|
290 |
+
" ',',\n",
|
291 |
+
" 'et',\n",
|
292 |
+
" 'unam',\n",
|
293 |
+
" 'partem',\n",
|
294 |
+
" 'nemoris',\n",
|
295 |
+
" 'quantum',\n",
|
296 |
+
" 'semita',\n",
|
297 |
+
" 'dividit',\n",
|
298 |
+
" 'versus',\n",
|
299 |
+
" 'terram',\n",
|
300 |
+
" 'datam',\n",
|
301 |
+
" ';',\n",
|
302 |
+
" 'hanc',\n",
|
303 |
+
" 'elemosinam',\n",
|
304 |
+
" 'in',\n",
|
305 |
+
" 'manu',\n",
|
306 |
+
" 'nostra',\n",
|
307 |
+
" 'resignatam',\n",
|
308 |
+
" 'benigne',\n",
|
309 |
+
" 'tribuit',\n",
|
310 |
+
" '.',\n",
|
311 |
+
" 'Sciendum',\n",
|
312 |
+
" 'autem',\n",
|
313 |
+
" 'quod',\n",
|
314 |
+
" 'de',\n",
|
315 |
+
" 'hac',\n",
|
316 |
+
" 'elemosina',\n",
|
317 |
+
" 'investivimus',\n",
|
318 |
+
" 'Guidonem',\n",
|
319 |
+
" ',',\n",
|
320 |
+
" 'quondam',\n",
|
321 |
+
" 'presbiterum',\n",
|
322 |
+
" 'de',\n",
|
323 |
+
" 'Meencort',\n",
|
324 |
+
" ',',\n",
|
325 |
+
" 'pro',\n",
|
326 |
+
" 'se',\n",
|
327 |
+
" 'et',\n",
|
328 |
+
" 'pro',\n",
|
329 |
+
" 'aliis',\n",
|
330 |
+
" 'ibi',\n",
|
331 |
+
" 'Deo',\n",
|
332 |
+
" 'se',\n",
|
333 |
+
" 'reddituris',\n",
|
334 |
+
" '.',\n",
|
335 |
+
" 'Actum',\n",
|
336 |
+
" 'apud',\n",
|
337 |
+
" 'Sanctum',\n",
|
338 |
+
" 'Victorem',\n",
|
339 |
+
" ',',\n",
|
340 |
+
" 'astantibus',\n",
|
341 |
+
" 'Petro',\n",
|
342 |
+
" ',',\n",
|
343 |
+
" 'precentore',\n",
|
344 |
+
" 'Parisiensi',\n",
|
345 |
+
" ';',\n",
|
346 |
+
" 'Nicholao',\n",
|
347 |
+
" ',',\n",
|
348 |
+
" 'presbitero',\n",
|
349 |
+
" ';',\n",
|
350 |
+
" 'Philippo',\n",
|
351 |
+
" ',',\n",
|
352 |
+
" 'canonico',\n",
|
353 |
+
" ';',\n",
|
354 |
+
" 'Haimerico',\n",
|
355 |
+
" ',',\n",
|
356 |
+
" 'capellano',\n",
|
357 |
+
" 'nostro',\n",
|
358 |
+
" ';',\n",
|
359 |
+
" 'Enardo',\n",
|
360 |
+
" ',',\n",
|
361 |
+
" 'presbitero',\n",
|
362 |
+
" 'de',\n",
|
363 |
+
" 'Balneolis',\n",
|
364 |
+
" ';',\n",
|
365 |
+
" 'fratre',\n",
|
366 |
+
" 'Stephano',\n",
|
367 |
+
" 'de',\n",
|
368 |
+
" 'Monte-Fermeolo',\n",
|
369 |
+
" ';',\n",
|
370 |
+
" 'incarnationis',\n",
|
371 |
+
" 'dominice',\n",
|
372 |
+
" 'anno',\n",
|
373 |
+
" 'millesimo',\n",
|
374 |
+
" 'centesimo',\n",
|
375 |
+
" 'XCº',\n",
|
376 |
+
" ',',\n",
|
377 |
+
" 'episcopatus',\n",
|
378 |
+
" 'nostri',\n",
|
379 |
+
" 'tricesimo',\n",
|
380 |
+
" 'sexto',\n",
|
381 |
+
" '.'],\n",
|
382 |
+
" 'spans': [{'text': 'Mauricius', 'label': 'PERSON', 'start': 7, 'end': 8},\n",
|
383 |
+
" {'text': 'Parisiensis', 'label': 'LOC', 'start': 11, 'end': 12},\n",
|
384 |
+
" {'text': 'Guido de Levies', 'label': 'PERSON', 'start': 25, 'end': 28},\n",
|
385 |
+
" {'text': 'Fers Dasnois', 'label': 'LOC', 'start': 68, 'end': 70},\n",
|
386 |
+
" {'text': 'Guidonem', 'label': 'PERSON', 'start': 108, 'end': 109},\n",
|
387 |
+
" {'text': 'Meencort', 'label': 'LOC', 'start': 113, 'end': 114},\n",
|
388 |
+
" {'text': 'Sanctum Victorem', 'label': 'LOC', 'start': 127, 'end': 129},\n",
|
389 |
+
" {'text': 'Petro', 'label': 'PERSON', 'start': 131, 'end': 132},\n",
|
390 |
+
" {'text': 'Parisiensi', 'label': 'LOC', 'start': 134, 'end': 135},\n",
|
391 |
+
" {'text': 'Nicholao', 'label': 'PERSON', 'start': 136, 'end': 137},\n",
|
392 |
+
" {'text': 'Philippo', 'label': 'PERSON', 'start': 140, 'end': 141},\n",
|
393 |
+
" {'text': 'Haimerico', 'label': 'PERSON', 'start': 144, 'end': 145},\n",
|
394 |
+
" {'text': 'Enardo', 'label': 'PERSON', 'start': 149, 'end': 150},\n",
|
395 |
+
" {'text': 'Balneolis', 'label': 'LOC', 'start': 153, 'end': 154},\n",
|
396 |
+
" {'text': 'Stephano de Monte-Fermeolo',\n",
|
397 |
+
" 'label': 'PERSON',\n",
|
398 |
+
" 'start': 156,\n",
|
399 |
+
" 'end': 159}]}"
|
400 |
+
]
|
401 |
+
},
|
402 |
+
"execution_count": 40,
|
403 |
+
"metadata": {},
|
404 |
+
"output_type": "execute_result"
|
405 |
+
}
|
406 |
+
],
|
407 |
+
"source": [
|
408 |
+
"hf_docs = []\n",
|
409 |
+
"hf_docs_sents = []\n",
|
410 |
+
"for doc in docs:\n",
|
411 |
+
" tokenized_text = [token.text for token in doc]\n",
|
412 |
+
" spans = [{\"text\": span.text, \"label\": span.label_, \"start\": span.start, \"end\": span.end} for span in doc.spans[\"sc\"]]\n",
|
413 |
+
" hf_docs.append({\"tokenized_text\": tokenized_text, \"spans\": spans})\n",
|
414 |
+
" for sent in doc.sents:\n",
|
415 |
+
" sent_doc = sent.as_doc() # Create a new Doc from the sentence\n",
|
416 |
+
" \n",
|
417 |
+
" # Create a list of spans that are within the boundaries of this sentence\n",
|
418 |
+
" sent_spans = [\n",
|
419 |
+
" {\"start\": span.start - sent.start, \"end\": span.end - sent.start, \"label\": span.label_, \"text\": span.text}\n",
|
420 |
+
" for span in doc.spans[\"sc\"] if span.start >= sent.start and span.end <= sent.end\n",
|
421 |
+
" ]\n",
|
422 |
+
" \n",
|
423 |
+
" # Check if there are entities in the sentence, if yes, add to hf_docs_sents\n",
|
424 |
+
" if sent_spans:\n",
|
425 |
+
" hf_docs_sents.append({\n",
|
426 |
+
" \"tokenized_text\": [token.text for token in sent],\n",
|
427 |
+
" \"spans\": sent_spans,\n",
|
428 |
+
" \"ms\": {} # Assuming 'ms' should be some metadata, define or update accordingly\n",
|
429 |
+
" })\n",
|
430 |
+
"hf_docs[0]"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"execution_count": 33,
|
436 |
+
"metadata": {},
|
437 |
+
"outputs": [
|
438 |
+
{
|
439 |
+
"data": {
|
440 |
+
"text/plain": [
|
441 |
+
"15141"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
"execution_count": 33,
|
445 |
+
"metadata": {},
|
446 |
+
"output_type": "execute_result"
|
447 |
}
|
448 |
],
|
449 |
"source": [
|
450 |
+
"len(hf_docs_sents)"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"cell_type": "code",
|
455 |
+
"execution_count": 34,
|
456 |
+
"metadata": {},
|
457 |
+
"outputs": [],
|
458 |
+
"source": [
|
459 |
+
"import srsly"
|
460 |
+
]
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"cell_type": "code",
|
464 |
+
"execution_count": 35,
|
465 |
+
"metadata": {},
|
466 |
+
"outputs": [],
|
467 |
+
"source": [
|
468 |
+
"srsly.write_jsonl(\"home-alcar-ner.jsonl\", hf_docs)"
|
469 |
]
|
470 |
},
|
471 |
{
|
472 |
"cell_type": "code",
|
473 |
+
"execution_count": 39,
|
474 |
"metadata": {},
|
475 |
"outputs": [],
|
476 |
"source": [
|
477 |
+
"srsly.write_jsonl(\"home-alcar-ner-sents.jsonl\", hf_docs_sents)"
|
478 |
]
|
479 |
},
|
480 |
{
|