Datasets:
License:
File size: 5,809 Bytes
05da4fa 734c8eb 927b3bd 734c8eb 05da4fa 734c8eb 05da4fa 6663a58 05da4fa 1b9fccd 9f2d453 c712e3e 224edaa 7f02aff 6663a58 27f3f20 b70ff63 1b9fccd 05da4fa 927b3bd 21e571a 9f2d453 224edaa 09e946b 927b3bd 734c8eb 05da4fa 21e571a 05da4fa 734c8eb 05da4fa 734c8eb 21e571a 421aac0 7f02aff c55b167 7f02aff c55b167 7f02aff 21e571a 734c8eb 05da4fa 927b3bd 6d32bc3 927b3bd 6663a58 05da4fa 734c8eb 50a4920 734c8eb 05da4fa 50a4920 734c8eb 05da4fa 50a4920 734c8eb 05da4fa 624ac80 6663a58 795f52c 06d9173 50a4920 06d9173 6f2769e 62a331c 50a4920 6663a58 c55b167 7f02aff c55b167 927b3bd 6663a58 927b3bd 9f2d453 06d9173 9f2d453 927b3bd 05da4fa 1b9fccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import csv
import os
import datasets
import pandas as pd
# Metadata
_DESCRIPTION = """\
Mumospee is a continuously growing, comprehensive, multilingual dataset across different modalities.
This is the small version include no more 1000 rows.
"""
_LICENSE = "Creative Commons Attribution 4.0 International"
_LANGUAGES = ["en", "bg", "de", "ar"]
_TAGS = ["CoVoST", "GigaSpeech", "peoples_speech", "Librispeech", "LibriTTS", "Emilia", "MOSEL"]
_SPLITS = ["train", "validation", "test"]
# BuilderConfig class for your dataset
class MumospeeDatasetConfig(datasets.BuilderConfig):
def __init__(self, split, language=None, tag=None, **kwargs):
super().__init__(**kwargs)
self.split=split
self.language = language
self.tag = tag
class MumospeeDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# Define the available configurations (could be subsets like split or language)
BUILDER_CONFIGS = [
MumospeeDatasetConfig(
name="default",
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
split="train",
language=None,
tag=None
)
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
# Define the features of your dataset
features = datasets.Features({
"path": datasets.Value("string"),
"url": datasets.Value("string"),
"type": datasets.Value("string"),
"duration": datasets.Value("string"),
"language": datasets.Value("string"),
"transcript": datasets.Value("string"),
"tag": datasets.Value("string"),
"split": datasets.Value("string"),
"license": datasets.Value("string")
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
license=_LICENSE,
)
def _adapt_args(self, arg, accepted_arg):
"""
Adpat the input and make sure it outs as list
and all the elements within the list are accpeted.
"""
if arg:
if isinstance(arg, str):
adapted_arg = [arg]
else:
adapted_arg = arg
for aa in adapted_arg:
if aa not in accepted_arg:
raise ValueError(f"Invalid input: '{aa}'. Accepted values are: {', '.join(accepted_arg)}.")
else:
adapted_arg = accepted_arg
return adapted_arg
def _split_generators(self, dl_manager):
"""Split the dataset into train, validation, and test."""
# Your dataset might have specific splits like "train", "dev", "test"
splits = ["train", "validation", "test"]
csv_path = dl_manager.download_and_extract("dataset.csv")
# ===To download the url
# Load CSV to retrieve URLs for audio files
# data = pd.read_csv(csv_path)
# url_list = data["url"].tolist() # List of all URLs in the CSV file
# url_list = list(set(url_list))
# # Download all files listed in the 'url' column and store the local paths
# downloaded_files = dl_manager.download(url_list)
# # Add the downloaded file paths to the DataFrame to make them accessible in `_generate_examples`
# data["local_path"] = downloaded_files
#===
# Define the splits and pass the language and tag filters to _generate_examples
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": csv_path}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": csv_path}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": csv_path}
),
]
def _generate_examples(self, filepath):
data = pd.read_csv(filepath)
split = self.config.split
language = self.config.language
tag = self.config.tag
print(f'Return {split} dataset in langauge of {language}, originally from {tag}.')
data_split = data[data["split"] == split]
language_list = self._adapt_args(language, _LANGUAGES)
tag_list = self._adapt_args(tag, _TAGS)
print(f"Following langauges will be loaded: {language_list}")
print(f"Following dataset will be loaded: {tag_list}")
data_split = data_split[data_split["language"].isin(language_list)]
data_split = data_split[data_split["tag"].isin(tag_list)]
if data_split.empty:
print(f"No data found for split='{split}', language='{language}', tag='{tag}'. Returning None.")
return # This exits the generator without yielding any examples
else:
for i, row in data_split.iterrows():
yield i, {
"path": row["path"],
#"local_path": row["local_path"],
"url": row["url"],
"type": row["type"],
"duration": float(row["duration"]),
"language": row["language"],
"transcript": row["transcript"],
"tag": row["tag"],
"split": row["split"],
"license": row["license"]
}
def _download_audio(self, audio_url):
"""Download audio from a URL if needed (you could also implement streaming)."""
# This is an example function for downloading audio if it's needed
# You can integrate this within your data processing pipeline if required
pass
|