File size: 6,380 Bytes
05da4fa
 
734c8eb
927b3bd
99901de
734c8eb
05da4fa
734c8eb
05da4fa
 
 
 
 
 
 
4f3b886
05da4fa
aa6b49f
6663a58
57ad8b5
05da4fa
 
 
 
1b9fccd
6720bec
c712e3e
6720bec
7f02aff
 
0b40ec6
7f02aff
6663a58
1b9fccd
05da4fa
 
 
 
927b3bd
 
 
21e571a
fab0268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b40ec6
224edaa
 
09e946b
927b3bd
fab0268
734c8eb
 
05da4fa
 
 
 
 
21e571a
05da4fa
 
 
 
 
 
734c8eb
05da4fa
 
 
734c8eb
21e571a
421aac0
7f02aff
 
 
 
 
c55b167
 
 
 
 
 
 
 
7f02aff
c55b167
7f02aff
 
21e571a
734c8eb
927b3bd
f2fe1c2
6d32bc3
99901de
6720bec
 
 
 
68934f5
6720bec
 
 
68934f5
6720bec
 
 
68934f5
6720bec
 
99901de
6720bec
 
 
 
68934f5
6720bec
 
927b3bd
6663a58
d4ce4be
6663a58
795f52c
d4ce4be
06d9173
 
0b40ec6
6f2769e
6720bec
 
 
 
 
 
8387f24
6720bec
6663a58
74cf219
6720bec
74cf219
 
 
 
 
 
 
 
 
 
 
420f11e
74cf219
 
 
 
 
 
ee6d1f9
99901de
6720bec
74cf219
0982e8c
74cf219
0982e8c
6720bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
927b3bd
 
 
1b9fccd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import csv
import os
import datasets
import pandas as pd
from datasets import Split 

# Metadata

_DESCRIPTION = """\

Mumospee is a continuously growing, comprehensive, multilingual dataset across different modalities. 
This is the small version include no more 1000 rows.

"""

_LICENSE = "cc0-1.0"

_LANGUAGES = ["en", "bg", "de", "ar", "fr"] 

_TAGS = ["CoVoST", "GigaSpeech", "PeopleSpeech", "Librispeech", "LibriTTS", "Emilia", "MOSEL"]

_SPLITS = ["train", "validation", "test"]

# BuilderConfig class for your dataset
class MumospeeDatasetConfig(datasets.BuilderConfig):
    def __init__(self, name, download_audio=None, language=None, tag=None, **kwargs):
        super().__init__(**kwargs)
        self.name = name
        self.language = language
        self.tag = tag
        self.download_audio = download_audio
    

class MumospeeDataset(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.0.0")

    # Define the available configurations (could be subsets like split or language)
    BUILDER_CONFIGS = [
        MumospeeDatasetConfig(
            version=datasets.Version("1.0.0"),
            description=_DESCRIPTION,
            name="train",
            download_audio=None,
            language=None,
            tag=None
            ),
        MumospeeDatasetConfig(
            version=datasets.Version("1.0.0"),
            description=_DESCRIPTION,
            name="test",
            download_audio=None,
            language=None,
            tag=None
            ),
        MumospeeDatasetConfig(
            version=datasets.Version("1.0.0"),
            description=_DESCRIPTION,
            name="validation",
            download_audio=None,
            language=None,
            tag=None
            )
        ]
    DEFAULT_CONFIG_NAME = "train"

    def _info(self):
        # Define the features of your dataset
        features = datasets.Features({
            "path": datasets.Value("string"),
            "url": datasets.Value("string"),
            "type": datasets.Value("string"),
            "duration": datasets.Value("string"),
            "language": datasets.Value("string"),
            "transcript": datasets.Value("string"),
            "tag": datasets.Value("string"),
            "split": datasets.Value("string"),
            "license": datasets.Value("string")
        })
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            license=_LICENSE,
        )
    
    def _adapt_args(self, arg, accepted_arg):
        """
        Adpat the input and make sure it outs as list 
        and all the elements within the list are accpeted.
        """

        if arg:
            if isinstance(arg, str):
                adapted_arg = [arg]
            else:
                adapted_arg = arg
            for aa in adapted_arg:
                if aa not in accepted_arg:
                    raise ValueError(f"Invalid input: '{aa}'. Accepted values are: {', '.join(accepted_arg)}.")
        else:
            adapted_arg = accepted_arg

        return adapted_arg



    def _split_generators(self, dl_manager):
        csv_path = dl_manager.download_and_extract("dataset.csv")

        if self.config.name==None:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={"filepath": csv_path, "dl_manager": dl_manager}
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={"filepath": csv_path, "dl_manager": dl_manager}
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={"filepath": csv_path, "dl_manager": dl_manager}
                ),
            ]

        else:
            return [
                datasets.SplitGenerator(
                    name = getattr(Split, self.config.name.upper()), 
                    gen_kwargs={"filepath": csv_path, "dl_manager": dl_manager}
                ),
            ]


    def _generate_examples(self, filepath, dl_manager):

        data = pd.read_csv(filepath)
        name = self.config.name
        language = self.config.language
        tag = self.config.tag
        download_audio = self.config.download_audio

        all_splits=[]
        # If split is None, generate examples for all splits
        if name is None:
            all_splits = _SPLITS
        else:
            all_splits = [name]

        print(f"Split input is {name}, so get split of {all_splits}.")

        # Split base on name split train, test, validation. 
        data_split = data[data["split"]==name]
        if data_split.empty:
            print(f"No data found for split='{name}'. Skipping this split.")
            return
        

        # Split based on tags.
        if tag is not None:
            tag_list = self._adapt_args(tag, _TAGS)
            data_split = data_split[data_split["tag"].isin(tag_list)]
        else:
            print(f"No specific tag provided, including all tags in split='{name}', language='{language or 'all'}'.")

        # split based on language.
        if language is not None:
            language_list = self._adapt_args(language, _LANGUAGES)
            data_split = data_split[data_split["language"].isin(language_list)]
        else:
            print(f"No specific language provided, including all languages in split='{name}', tag='{tag or 'all'}'.")

        if data_split.empty:
            print(f"No data found for split='{name}', language='{language}', tag='{tag}'. Skip this one.")
            return 

        # Generate examples
        for i, row in data_split.iterrows():
            # download the url file
            if download_audio:
                external_url = row["url"]
                dl_manager.download(external_url)
            yield i, {
                "path": row["path"],
                #"local_path": row["local_path"],
                "url": row["url"],
                "type": row["type"],
                "duration": float(row["duration"]),
                "language": row["language"],
                "transcript": row["transcript"],
                "tag": row["tag"],
                "split": row["split"],
                "license": row["license"]
            }