Datasets:
License:
import csv | |
import os | |
import datasets | |
# Metadata | |
_DESCRIPTION = """\ | |
Mumospee is a continuously growing, comprehensive, multilingual dataset across different modalities. | |
This is the small version include no more 1000 rows. | |
""" | |
_LICENSE = "Creative Commons Attribution 4.0 International" | |
# Defining categories or tags for filtering | |
_LANGUAGES = ["en", "bg", "de", "es", "it", "ar"] # Example languages | |
_TAGS = ["CoVoST", "GigaSpeech", "peoples_speech", "Librispeech", "LibriTTS", "Emilia", "MOSEL"] | |
_SPLITS = ["train", "validation", "test"] | |
# BuilderConfig class for your dataset | |
class MumospeeDatasetConfig(datasets.BuilderConfig): | |
def __init__(self, name, *args, **kwargs): | |
super().__init__(name=name, *args, **kwargs) | |
self.language = kwargs.get("language", None) # Add language as a key in the config | |
self.tag = kwargs.get("tag", None) # Add tag as a key in the config | |
class MumospeeDataset(datasets.GeneratorBasedBuilder): | |
"""Your custom dataset for Hugging Face based on the CSV metadata and audio URLs.""" | |
VERSION = datasets.Version("1.0.0") | |
# Define the available configurations (could be subsets like split or language) | |
BUILDER_CONFIGS = [MumospeeDatasetConfig(name="default")] | |
def _info(self): | |
# Define the features of your dataset | |
features = datasets.Features({ | |
"path": datasets.Value("string"), | |
"url": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"duration": datasets.Value("float32"), | |
"language": datasets.Value("string"), | |
"transcript": datasets.Value("string"), | |
"tag": datasets.Value("string"), | |
"split": datasets.Value("string"), | |
"license": datasets.Value("string") | |
}) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
license=_LICENSE, | |
) | |
def _split_generators(self, dl_manager): | |
"""Split the dataset into train, validation, and test.""" | |
# Your dataset might have specific splits like "train", "dev", "test" | |
splits = ["train", "validation", "test"] | |
# Define the splits and pass the language and tag filters to _generate_examples | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"split": "train", "languages": _LANGUAGES, "tags": _TAGS} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"split": "validation", "languages": _LANGUAGES, "tags": _TAGS} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"split": "test", "languages": _LANGUAGES, "tags": _TAGS} | |
), | |
] | |
def _generate_examples(self, split, dl_manager): | |
"""Generate examples from the CSV data and audio URLs.""" | |
# Use dl_manager to get the CSV file from the Hugging Face repo | |
csv_file = dl_manager.download_and_extract("metadata.csv") | |
# Read the CSV metadata | |
with open(csv_file, mode='r', encoding='utf-8') as f: | |
reader = csv.DictReader(f) | |
for row in reader: | |
# Filter by tag or language here if necessary | |
if row["language"] not in _LANGUAGES: | |
continue # Skip entries with unsupported languages | |
if row["tag"] not in _TAGS: | |
continue # Skip entries with unsupported tags | |
# Construct the full audio path or URL | |
audio_url = row["url"] | |
# Prepare the data entry for this example | |
yield row["path"], { | |
"audio": audio_url, | |
"duration": float(row["duration"]), | |
"language": row["language"], | |
"transcript": row["transcript"], | |
"tag": row["tag"], | |
"split": row["split"], | |
"license": row["license"] | |
} | |
def _download_audio(self, audio_url): | |
"""Download audio from a URL if needed (you could also implement streaming).""" | |
# This is an example function for downloading audio if it's needed | |
# You can integrate this within your data processing pipeline if required | |
pass | |