import pandas as pd import sqlite3 from yfcc100m.convert_metadata import generate_rows_from_db from datadings.tools import yield_threaded from tqdm import tqdm df = pd.read_table( "yfcc100m_subset_data.tsv", header=None, names=["line_number", "identifier", "hash"] ) clip_photoids = df["identifier"].tolist() # 15 million ids rows = generate_rows_from_db("yfcc100m_dataset.sql", "yfcc100m_dataset") gen = yield_threaded(rows) dfs = [] chunk = [] for i, row in enumerate(tqdm(gen, total=100000000)): chunk.append(row) if (i + 1) % 10_000_000 == 0: df = pd.DataFrame( chunk, columns=[ "photoid", "uid", "unickname", "datetaken", "dateuploaded", "capturedevice", "title", "description", "usertags", "machinetags", "longitude", "latitude", "accuracy", "pageurl", "downloadurl", "licensename", "licenseurl", "serverid", "farmid", "secret", "secretoriginal", "ext", "marker", ], ) df = df[df["photoid"].isin(clip_photoids)].reset_index(drop=True) dfs.append(df) chunk = [] df = pd.concat(dfs) df.to_csv("yfcc15m.csv", index=False)