--- task_categories: - image-feature-extraction --- # Google Image Malaysian Vehicle Dedup Original dataset https://huggingface.co/datasets/malaysia-ai/crawl-google-image-malaysian-vehicle Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/vlm/dedup-malaysian-vehicle ## Dedup 70% similar [dedup-0.7.jsonl](dedup-0.7.jsonl), total deduped 97598 images, ``` {'filename': 'train-00075-of-00165-c0ebcc169b1f62d2.parquet', 'keyword': '2021 Honda City 1.5 E', 'no': 2, 'selected_indices': [696, 702, 705, 707, 712, 716, 720, 723, 727, 732, 742, 745, 775, 779, 780, 787, 797, 817, 844, 876, 894, 898, 905, 917, 962, 965, 966, 988, 993, 995, 1000, 1009, 1012, 1015, 1016, 1029, 1044, 1049, 1054, 1077, 1086, 1096, 1131, 1174, 1185, 1188, 1198, 1208, 1216, 1217, 1219, 1223, 1229, 1237, 1247, 1253, 1274, 1276, 1286, 1305, 1314, 1347, 1348, 1353, 1355, 1401, 1412]} ``` - `filename` is the parquet file from the original repository. - `selected_indices` is the index of dataframe of that filename. ## Embedding We convert to embedding using https://huggingface.co/google/siglip-base-patch16-512, we use MosaicML for faster indexing, ```python from streaming import MDSWriter from streaming.base.format.mds.encodings import Encoding, _encodings from streaming import LocalDataset import streaming import numpy as np from tqdm import tqdm class Float32(Encoding): def encode(self, obj) -> bytes: return obj.tobytes() def decode(self, data: bytes): return np.frombuffer(data, np.float32) _encodings['float32'] = Float32 dataset = LocalDataset('embedding') ```