{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "33ff07b7", "metadata": {}, "outputs": [], "source": [ "import json\n", "import soundfile as sf\n", "from tqdm import tqdm" ] }, { "cell_type": "code", "execution_count": 2, "id": "8b36e5d6", "metadata": {}, "outputs": [], "source": [ "!mkdir audio" ] }, { "cell_type": "code", "execution_count": 3, "id": "26f935d3", "metadata": {}, "outputs": [], "source": [ "with open('/home/husein/speech-bahasa/malay-asr-train-shuffled.json') as fopen:\n", " data = json.load(fopen)" ] }, { "cell_type": "code", "execution_count": 6, "id": "c9d2279d", "metadata": {}, "outputs": [], "source": [ "# !wget https://gist.githubusercontent.com/huseinzol05/98974ae8c6c7a65d4bc0af9f5003786a/raw/5aa5257608b61e8fcc828e99fbd070d5ca7358e3/mp.py" ] }, { "cell_type": "code", "execution_count": 7, "id": "51e46ebc", "metadata": {}, "outputs": [], "source": [ "import mp\n", "\n", "def loop(index):\n", " index, _ = index\n", " for i in tqdm(index):\n", " y, _ = sf.read(data['X'][i])\n", " sf.write(f'audio/{i}.mp3', y, 16000)" ] }, { "cell_type": "code", "execution_count": 8, "id": "61fb2fd6", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|███████████████████████████████████████████| 10/10 [00:02<00:00, 4.63it/s]\n" ] } ], "source": [ "loop((range(10), 0))" ] }, { "cell_type": "code", "execution_count": 9, "id": "45421d6d", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ " 76%|████████████████████████▎ | 61997/81779 [20:02:48<7:46:14, 1.41s/it]IOPub message rate exceeded.\n", "The notebook server will temporarily stop sending output\n", "to the client in order to avoid crashing it.\n", "To change this limit, set the config variable\n", "`--NotebookApp.iopub_msg_rate_limit`.\n", "\n", "Current values:\n", "NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n", "NotebookApp.rate_limit_window=3.0 (secs)\n", "\n", "100%|██████████████████████████████████| 81779/81779 [26:37:45<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:37:49<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:37:51<00:00, 1.17s/it]\n", "100%|███████████████████████████████████████████| 19/19 [00:23<00:00, 1.22s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:38:09<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:38:16<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:38:17<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:38:17<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:38:21<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:38:29<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:38:57<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:39:09<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:39:09<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:39:21<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:39:30<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:39:33<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:39:48<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:39:52<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:39:56<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:40:06<00:00, 1.17s/it]\n", "100%|██████████████████████████████████| 81779/81779 [26:40:12<00:00, 1.17s/it]\n" ] } ], "source": [ "mp.multiprocessing(range(len(data['X'])), loop, cores = 20, returned = False)" ] }, { "cell_type": "code", "execution_count": null, "id": "deb07990", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|█████████████████████████████| 1635599/1635599 [00:03<00:00, 484512.06it/s]\n" ] } ], "source": [ "import os\n", "\n", "with open('label.jsonl', 'w') as fopen:\n", " for i in tqdm(range(len(data['X']))):\n", " f = f'audio/{i}.mp3'\n", " d = {\n", " 'filename': f,\n", " 'Y': data['Y'][i]\n", " }\n", " fopen.write(f'{json.dumps(d)}\\n')" ] }, { "cell_type": "code", "execution_count": 24, "id": "85353fef", "metadata": {}, "outputs": [], "source": [ "from datasets import load_dataset, Audio" ] }, { "cell_type": "code", "execution_count": 25, "id": "5676f8b5", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading and preparing dataset json/default to /home/husein/.cache/huggingface/datasets/json/default-e2b95159dbdc9fa6/0.0.0/e347ab1c932092252e717ff3f949105a4dd28b27e842dd53157d2f72e276c2e4...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "589c88f771424543b3d60f24f89fbe83", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Downloading data files: 0%| | 0/1 [00:00\n", " \n", " Your browser does not support the audio element.\n", " \n", " " ], "text/plain": [ "" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import IPython.display as ipd\n", "ipd.Audio(dataset[10000]['filename']['array'], rate = 16000)" ] }, { "cell_type": "code", "execution_count": 40, "id": "390a8aff", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "26d553fe2c7a485fba88312495a124e8", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Map: 0%| | 0/15286 [00:00