import json import pandas as pd import datasets import csv from datasets.tasks import Summarization logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """\ Aihub Document summarization data """ _URL = "https://huggingface.co/datasets/metamong1/summarization_optimization/resolve/main/" _URLS = { "train_data": _URL + "train_data.csv", "validation_data": _URL + "validation_data.csv", } class SummarizationOptimization(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( name="Summarization Part Data", version=datasets.Version("1.0.0", ""), description="Text Summarization & Generation Title for optimization", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "doc_id": datasets.Value("string"), "title": datasets.Value("string"), "text": datasets.Value("string"), "doc_type": datasets.Value("string"), "file": datasets.Value("string"), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage="https://huggingface.co/datasets/metamong1/summarization_optimization", ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train_data"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["validation_data"]}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with open(filepath, newline='', encoding="utf-8") as csvfile: reader = csv.reader(csvfile, delimiter=",") feature_name = next(reader) idx = 0 for row in reader: features = { "doc_id" : row[1], "title" : row[2], "text" : row[3], "doc_type" : row[4], "file" : row[5], } yield idx, features idx += 1