index
int64
0
731k
package
stringlengths
2
98
name
stringlengths
1
76
docstring
stringlengths
0
281k
code
stringlengths
4
1.07M
signature
stringlengths
2
42.8k
728,909
tables.table
flush
Flush the table buffers.
def flush(self): """Flush the table buffers.""" if self._v_file._iswritable(): # Flush rows that remains to be appended if 'row' in self.__dict__: self.row._flush_buffered_rows() if self.indexed and self.autoindex: # Flush any unindexed row rowsadded = self.flush_rows_to_index(_lastrow=True) assert rowsadded <= 0 or self._indexedrows == self.nrows, \ ("internal error: the number of indexed rows (%d) " "and rows in the table (%d) is not equal; " "please report this to the authors." % (self._indexedrows, self.nrows)) if self._dirtyindexes: # Finally, re-index any dirty column self.reindex_dirty() super().flush()
(self)
728,910
tables.table
flush_rows_to_index
Add remaining rows in buffers to non-dirty indexes. This can be useful when you have chosen non-automatic indexing for the table (see the :attr:`Table.autoindex` property in :class:`Table`) and you want to update the indexes on it.
def flush_rows_to_index(self, _lastrow=True): """Add remaining rows in buffers to non-dirty indexes. This can be useful when you have chosen non-automatic indexing for the table (see the :attr:`Table.autoindex` property in :class:`Table`) and you want to update the indexes on it. """ rowsadded = 0 if self.indexed: # Update the number of unsaved indexed rows start = self._indexedrows nrows = self._unsaved_indexedrows for (colname, colindexed) in self.colindexed.items(): if colindexed: col = self.cols._g_col(colname) if nrows > 0 and not col.index.dirty: rowsadded = self._add_rows_to_index( colname, start, nrows, _lastrow, update=True) self._unsaved_indexedrows -= rowsadded self._indexedrows += rowsadded return rowsadded
(self, _lastrow=True)
728,912
tables.table
get_enum
Get the enumerated type associated with the named column. If the column named colname (a string) exists and is of an enumerated type, the corresponding Enum instance (see :ref:`EnumClassDescr`) is returned. If it is not of an enumerated type, a TypeError is raised. If the column does not exist, a KeyError is raised.
def get_enum(self, colname): """Get the enumerated type associated with the named column. If the column named colname (a string) exists and is of an enumerated type, the corresponding Enum instance (see :ref:`EnumClassDescr`) is returned. If it is not of an enumerated type, a TypeError is raised. If the column does not exist, a KeyError is raised. """ self._check_column(colname) try: return self._colenums[colname] except KeyError: raise TypeError( "column ``%s`` of table ``%s`` is not of an enumerated type" % (colname, self._v_pathname))
(self, colname)
728,913
tables.table
get_where_list
Get the row coordinates fulfilling the given condition. The coordinates are returned as a list of the current flavor. sort means that you want to retrieve the coordinates ordered. The default is to not sort them. The meaning of the other arguments is the same as in the :meth:`Table.where` method.
def get_where_list(self, condition, condvars=None, sort=False, start=None, stop=None, step=None): """Get the row coordinates fulfilling the given condition. The coordinates are returned as a list of the current flavor. sort means that you want to retrieve the coordinates ordered. The default is to not sort them. The meaning of the other arguments is the same as in the :meth:`Table.where` method. """ self._g_check_open() coords = [p.nrow for p in self._where(condition, condvars, start, stop, step)] coords = np.array(coords, dtype=SizeType) # Reset the conditions self._where_condition = None if sort: coords = np.sort(coords) return internal_to_flavor(coords, self.flavor)
(self, condition, condvars=None, sort=False, start=None, stop=None, step=None)
728,915
tables.table
iterrows
Iterate over the table using a Row instance. If a range is not supplied, *all the rows* in the table are iterated upon - you can also use the :meth:`Table.__iter__` special method for that purpose. If you want to iterate over a given *range of rows* in the table, you may use the start, stop and step parameters. .. warning:: When in the middle of a table row iterator, you should not use methods that can change the number of rows in the table (like :meth:`Table.append` or :meth:`Table.remove_rows`) or unexpected errors will happen. See Also -------- tableextension.Row : the table row iterator and field accessor Examples -------- :: result = [ row['var2'] for row in table.iterrows(step=5) if row['var1'] <= 20 ] .. versionchanged:: 3.0 If the *start* parameter is provided and *stop* is None then the table is iterated from *start* to the last line. In PyTables < 3.0 only one element was returned.
def iterrows(self, start=None, stop=None, step=None): """Iterate over the table using a Row instance. If a range is not supplied, *all the rows* in the table are iterated upon - you can also use the :meth:`Table.__iter__` special method for that purpose. If you want to iterate over a given *range of rows* in the table, you may use the start, stop and step parameters. .. warning:: When in the middle of a table row iterator, you should not use methods that can change the number of rows in the table (like :meth:`Table.append` or :meth:`Table.remove_rows`) or unexpected errors will happen. See Also -------- tableextension.Row : the table row iterator and field accessor Examples -------- :: result = [ row['var2'] for row in table.iterrows(step=5) if row['var1'] <= 20 ] .. versionchanged:: 3.0 If the *start* parameter is provided and *stop* is None then the table is iterated from *start* to the last line. In PyTables < 3.0 only one element was returned. """ (start, stop, step) = self._process_range(start, stop, step, warn_negstep=False) if (start > stop and 0 < step) or (start < stop and 0 > step): # Fall-back action is to return an empty iterator return iter([]) row = tableextension.Row(self) return row._iter(start, stop, step)
(self, start=None, stop=None, step=None)
728,916
tables.table
itersequence
Iterate over a sequence of row coordinates.
def itersequence(self, sequence): """Iterate over a sequence of row coordinates.""" if not hasattr(sequence, '__getitem__'): raise TypeError("Wrong 'sequence' parameter type. Only sequences " "are suported.") # start, stop and step are necessary for the new iterator for # coordinates, and perhaps it would be useful to add them as # parameters in the future (not now, because I've just removed # the `sort` argument for 2.1). # # *Important note*: Negative values for step are not supported # for the general case, but only for the itersorted() and # read_sorted() purposes! The self._process_range_read will raise # an appropiate error. # F. Alted 2008-09-18 # A.V. 20130513: _process_range_read --> _process_range (start, stop, step) = self._process_range(None, None, None) if (start > stop) or (len(sequence) == 0): return iter([]) row = tableextension.Row(self) return row._iter(start, stop, step, coords=sequence)
(self, sequence)
728,917
tables.table
itersorted
Iterate table data following the order of the index of sortby column. The sortby column must have associated a full index. If you want to ensure a fully sorted order, the index must be a CSI one. You may want to use the checkCSI argument in order to explicitly check for the existence of a CSI index. The meaning of the start, stop and step arguments is the same as in :meth:`Table.read`. .. versionchanged:: 3.0 If the *start* parameter is provided and *stop* is None then the table is iterated from *start* to the last line. In PyTables < 3.0 only one element was returned.
def itersorted(self, sortby, checkCSI=False, start=None, stop=None, step=None): """Iterate table data following the order of the index of sortby column. The sortby column must have associated a full index. If you want to ensure a fully sorted order, the index must be a CSI one. You may want to use the checkCSI argument in order to explicitly check for the existence of a CSI index. The meaning of the start, stop and step arguments is the same as in :meth:`Table.read`. .. versionchanged:: 3.0 If the *start* parameter is provided and *stop* is None then the table is iterated from *start* to the last line. In PyTables < 3.0 only one element was returned. """ index = self._check_sortby_csi(sortby, checkCSI) # Adjust the slice to be used. (start, stop, step) = self._process_range(start, stop, step, warn_negstep=False) if (start > stop and 0 < step) or (start < stop and 0 > step): # Fall-back action is to return an empty iterator return iter([]) row = tableextension.Row(self) return row._iter(start, stop, step, coords=index)
(self, sortby, checkCSI=False, start=None, stop=None, step=None)
728,918
tables.table
modify_column
Modify one single column in the row slice [start:stop:step]. The colname argument specifies the name of the column in the table to be modified with the data given in column. This method returns the number of rows modified. Should the modification exceed the length of the table, an IndexError is raised before changing data. The *column* argument may be any object which can be converted to a (record) array compliant with the structure of the column to be modified (otherwise, a ValueError is raised). This includes NumPy (record) arrays, lists of scalars, tuples or array records, and a string or Python buffer.
def modify_column(self, start=None, stop=None, step=None, column=None, colname=None): """Modify one single column in the row slice [start:stop:step]. The colname argument specifies the name of the column in the table to be modified with the data given in column. This method returns the number of rows modified. Should the modification exceed the length of the table, an IndexError is raised before changing data. The *column* argument may be any object which can be converted to a (record) array compliant with the structure of the column to be modified (otherwise, a ValueError is raised). This includes NumPy (record) arrays, lists of scalars, tuples or array records, and a string or Python buffer. """ if step is None: step = 1 if not isinstance(colname, str): raise TypeError("The 'colname' parameter must be a string.") self._v_file._check_writable() if column is None: # Nothing to be done return SizeType(0) if start is None: start = 0 if start < 0: raise ValueError("'start' must have a positive value.") if step < 1: raise ValueError( "'step' must have a value greater or equal than 1.") # Get the column format to be modified: objcol = self._get_column_instance(colname) descr = [objcol._v_parent._v_nested_descr[objcol._v_pos]] # Try to convert the column object into a NumPy ndarray try: # If the column is a recarray (or kind of), convert into ndarray if hasattr(column, 'dtype') and column.dtype.kind == 'V': column = np.rec.array(column, dtype=descr).field(0) else: # Make sure the result is always a *copy* of the original, # so the resulting object is safe for in-place conversion. iflavor = flavor_of(column) column = array_as_internal(column, iflavor) except Exception as exc: # XXX raise ValueError("column parameter cannot be converted into a " "ndarray object compliant with specified column " "'%s'. The error was: <%s>" % (str(column), exc)) # Get rid of single-dimensional dimensions column = column.squeeze() if column.shape == (): # Oops, stripped off to much dimensions column.shape = (1,) if stop is None: # compute the stop value. start + len(rows)*step does not work stop = start + (len(column) - 1) * step + 1 (start, stop, step) = self._process_range(start, stop, step) if stop > self.nrows: raise IndexError("This modification will exceed the length of " "the table. Giving up.") # Compute the number of rows to read. nrows = len(range(start, stop, step)) if len(column) < nrows: raise ValueError("The value has not enough elements to fill-in " "the specified range") # Now, read the original values: mod_recarr = self._read(start, stop, step) # Modify the appropriate column in the original recarray mod_col = get_nested_field(mod_recarr, colname) mod_col[:] = column # save this modified rows in table self._update_records(start, stop, step, mod_recarr) # Redo the index if needed self._reindex([colname]) return SizeType(nrows)
(self, start=None, stop=None, step=None, column=None, colname=None)
728,919
tables.table
modify_columns
Modify a series of columns in the row slice [start:stop:step]. The names argument specifies the names of the columns in the table to be modified with the data given in columns. This method returns the number of rows modified. Should the modification exceed the length of the table, an IndexError is raised before changing data. The columns argument may be any object which can be converted to a structured array compliant with the structure of the columns to be modified (otherwise, a ValueError is raised). This includes NumPy structured arrays, lists of tuples or array records, and a string or Python buffer.
def modify_columns(self, start=None, stop=None, step=None, columns=None, names=None): """Modify a series of columns in the row slice [start:stop:step]. The names argument specifies the names of the columns in the table to be modified with the data given in columns. This method returns the number of rows modified. Should the modification exceed the length of the table, an IndexError is raised before changing data. The columns argument may be any object which can be converted to a structured array compliant with the structure of the columns to be modified (otherwise, a ValueError is raised). This includes NumPy structured arrays, lists of tuples or array records, and a string or Python buffer. """ if step is None: step = 1 if type(names) not in (list, tuple): raise TypeError("The 'names' parameter must be a list of strings.") if columns is None: # Nothing to be done return SizeType(0) if start is None: start = 0 if start < 0: raise ValueError("'start' must have a positive value.") if step < 1: raise ValueError("'step' must have a value greater or " "equal than 1.") descr = [] for colname in names: objcol = self._get_column_instance(colname) descr.append(objcol._v_parent._v_nested_descr[objcol._v_pos]) # descr.append(objcol._v_parent._v_dtype[objcol._v_pos]) # Try to convert the columns object into a recarray try: # Make sure the result is always a *copy* of the original, # so the resulting object is safe for in-place conversion. iflavor = flavor_of(columns) if iflavor != 'python': columns = array_as_internal(columns, iflavor) recarray = np.rec.array(columns, dtype=descr) else: recarray = np.rec.fromarrays(columns, dtype=descr) except Exception as exc: # XXX raise ValueError("columns parameter cannot be converted into a " "recarray object compliant with table '%s'. " "The error was: <%s>" % (str(self), exc)) if stop is None: # compute the stop value. start + len(rows)*step does not work stop = start + (len(recarray) - 1) * step + 1 (start, stop, step) = self._process_range(start, stop, step) if stop > self.nrows: raise IndexError("This modification will exceed the length of " "the table. Giving up.") # Compute the number of rows to read. nrows = len(range(start, stop, step)) if len(recarray) < nrows: raise ValueError("The value has not enough elements to fill-in " "the specified range") # Now, read the original values: mod_recarr = self._read(start, stop, step) # Modify the appropriate columns in the original recarray for i, name in enumerate(recarray.dtype.names): mod_col = get_nested_field(mod_recarr, names[i]) mod_col[:] = recarray[name].squeeze() # save this modified rows in table self._update_records(start, stop, step, mod_recarr) # Redo the index if needed self._reindex(names) return SizeType(nrows)
(self, start=None, stop=None, step=None, columns=None, names=None)
728,920
tables.table
modify_coordinates
Modify a series of rows in positions specified in coords. The values in the selected rows will be modified with the data given in rows. This method returns the number of rows modified. The possible values for the rows argument are the same as in :meth:`Table.append`.
def modify_coordinates(self, coords, rows): """Modify a series of rows in positions specified in coords. The values in the selected rows will be modified with the data given in rows. This method returns the number of rows modified. The possible values for the rows argument are the same as in :meth:`Table.append`. """ if rows is None: # Nothing to be done return SizeType(0) # Convert the coordinates to something expected by HDF5 coords = self._point_selection(coords) lcoords = len(coords) if len(rows) < lcoords: raise ValueError("The value has not enough elements to fill-in " "the specified range") # Convert rows into a recarray recarr = self._conv_to_recarr(rows) if len(coords) > 0: # Do the actual update of rows self._update_elements(lcoords, coords, recarr) # Redo the index if needed self._reindex(self.colpathnames) return SizeType(lcoords)
(self, coords, rows)
728,921
tables.table
modify_rows
Modify a series of rows in the slice [start:stop:step]. The values in the selected rows will be modified with the data given in rows. This method returns the number of rows modified. Should the modification exceed the length of the table, an IndexError is raised before changing data. The possible values for the rows argument are the same as in :meth:`Table.append`.
def modify_rows(self, start=None, stop=None, step=None, rows=None): """Modify a series of rows in the slice [start:stop:step]. The values in the selected rows will be modified with the data given in rows. This method returns the number of rows modified. Should the modification exceed the length of the table, an IndexError is raised before changing data. The possible values for the rows argument are the same as in :meth:`Table.append`. """ if step is None: step = 1 if rows is None: # Nothing to be done return SizeType(0) if start is None: start = 0 if start < 0: raise ValueError("'start' must have a positive value.") if step < 1: raise ValueError( "'step' must have a value greater or equal than 1.") if stop is None: # compute the stop value. start + len(rows)*step does not work stop = start + (len(rows) - 1) * step + 1 (start, stop, step) = self._process_range(start, stop, step) if stop > self.nrows: raise IndexError("This modification will exceed the length of " "the table. Giving up.") # Compute the number of rows to read. nrows = len(range(start, stop, step)) if len(rows) != nrows: raise ValueError("The value has different elements than the " "specified range") # Convert rows into a recarray recarr = self._conv_to_recarr(rows) lenrows = len(recarr) if start + lenrows > self.nrows: raise IndexError("This modification will exceed the length of the " "table. Giving up.") # Do the actual update self._update_records(start, stop, step, recarr) # Redo the index if needed self._reindex(self.colpathnames) return SizeType(lenrows)
(self, start=None, stop=None, step=None, rows=None)
728,923
tables.table
read
Get data in the table as a (record) array. The start, stop and step parameters can be used to select only a *range of rows* in the table. Their meanings are the same as in the built-in Python slices. If field is supplied only the named column will be selected. If the column is not nested, an *array* of the current flavor will be returned; if it is, a *structured array* will be used instead. If no field is specified, all the columns will be returned in a structured array of the current flavor. Columns under a nested column can be specified in the field parameter by using a slash character (/) as a separator (e.g. 'position/x'). The out parameter may be used to specify a NumPy array to receive the output data. Note that the array must have the same size as the data selected with the other parameters. Note that the array's datatype is not checked and no type casting is performed, so if it does not match the datatype on disk, the output will not be correct. When specifying a single nested column with the field parameter, and supplying an output buffer with the out parameter, the output buffer must contain all columns in the table. The data in all columns will be read into the output buffer. However, only the specified nested column will be returned from the method call. When data is read from disk in NumPy format, the output will be in the current system's byteorder, regardless of how it is stored on disk. If the out parameter is specified, the output array also must be in the current system's byteorder. .. versionchanged:: 3.0 Added the *out* parameter. Also the start, stop and step parameters now behave like in slice. Examples -------- Reading the entire table:: t.read() Reading record n. 6:: t.read(6, 7) Reading from record n. 6 to the end of the table:: t.read(6)
def read(self, start=None, stop=None, step=None, field=None, out=None): """Get data in the table as a (record) array. The start, stop and step parameters can be used to select only a *range of rows* in the table. Their meanings are the same as in the built-in Python slices. If field is supplied only the named column will be selected. If the column is not nested, an *array* of the current flavor will be returned; if it is, a *structured array* will be used instead. If no field is specified, all the columns will be returned in a structured array of the current flavor. Columns under a nested column can be specified in the field parameter by using a slash character (/) as a separator (e.g. 'position/x'). The out parameter may be used to specify a NumPy array to receive the output data. Note that the array must have the same size as the data selected with the other parameters. Note that the array's datatype is not checked and no type casting is performed, so if it does not match the datatype on disk, the output will not be correct. When specifying a single nested column with the field parameter, and supplying an output buffer with the out parameter, the output buffer must contain all columns in the table. The data in all columns will be read into the output buffer. However, only the specified nested column will be returned from the method call. When data is read from disk in NumPy format, the output will be in the current system's byteorder, regardless of how it is stored on disk. If the out parameter is specified, the output array also must be in the current system's byteorder. .. versionchanged:: 3.0 Added the *out* parameter. Also the start, stop and step parameters now behave like in slice. Examples -------- Reading the entire table:: t.read() Reading record n. 6:: t.read(6, 7) Reading from record n. 6 to the end of the table:: t.read(6) """ self._g_check_open() if field: self._check_column(field) if out is not None and self.flavor != 'numpy': msg = ("Optional 'out' argument may only be supplied if array " "flavor is 'numpy', currently is {}").format(self.flavor) raise TypeError(msg) start, stop, step = self._process_range(start, stop, step, warn_negstep=False) arr = self._read(start, stop, step, field, out) return internal_to_flavor(arr, self.flavor)
(self, start=None, stop=None, step=None, field=None, out=None)
728,924
tables.table
read_coordinates
Get a set of rows given their indexes as a (record) array. This method works much like the :meth:`Table.read` method, but it uses a sequence (coords) of row indexes to select the wanted columns, instead of a column range. The selected rows are returned in an array or structured array of the current flavor.
def read_coordinates(self, coords, field=None): """Get a set of rows given their indexes as a (record) array. This method works much like the :meth:`Table.read` method, but it uses a sequence (coords) of row indexes to select the wanted columns, instead of a column range. The selected rows are returned in an array or structured array of the current flavor. """ self._g_check_open() result = self._read_coordinates(coords, field) return internal_to_flavor(result, self.flavor)
(self, coords, field=None)
728,925
tables.table
read_sorted
Read table data following the order of the index of sortby column. The sortby column must have associated a full index. If you want to ensure a fully sorted order, the index must be a CSI one. You may want to use the checkCSI argument in order to explicitly check for the existence of a CSI index. If field is supplied only the named column will be selected. If the column is not nested, an *array* of the current flavor will be returned; if it is, a *structured array* will be used instead. If no field is specified, all the columns will be returned in a structured array of the current flavor. The meaning of the start, stop and step arguments is the same as in :meth:`Table.read`. .. versionchanged:: 3.0 The start, stop and step parameters now behave like in slice.
def read_sorted(self, sortby, checkCSI=False, field=None, start=None, stop=None, step=None): """Read table data following the order of the index of sortby column. The sortby column must have associated a full index. If you want to ensure a fully sorted order, the index must be a CSI one. You may want to use the checkCSI argument in order to explicitly check for the existence of a CSI index. If field is supplied only the named column will be selected. If the column is not nested, an *array* of the current flavor will be returned; if it is, a *structured array* will be used instead. If no field is specified, all the columns will be returned in a structured array of the current flavor. The meaning of the start, stop and step arguments is the same as in :meth:`Table.read`. .. versionchanged:: 3.0 The start, stop and step parameters now behave like in slice. """ self._g_check_open() index = self._check_sortby_csi(sortby, checkCSI) coords = index[start:stop:step] return self.read_coordinates(coords, field)
(self, sortby, checkCSI=False, field=None, start=None, stop=None, step=None)
728,926
tables.table
read_where
Read table data fulfilling the given *condition*. This method is similar to :meth:`Table.read`, having their common arguments and return values the same meanings. However, only the rows fulfilling the *condition* are included in the result. The meaning of the other arguments is the same as in the :meth:`Table.where` method.
def read_where(self, condition, condvars=None, field=None, start=None, stop=None, step=None): """Read table data fulfilling the given *condition*. This method is similar to :meth:`Table.read`, having their common arguments and return values the same meanings. However, only the rows fulfilling the *condition* are included in the result. The meaning of the other arguments is the same as in the :meth:`Table.where` method. """ self._g_check_open() coords = [p.nrow for p in self._where(condition, condvars, start, stop, step)] self._where_condition = None # reset the conditions if len(coords) > 1: cstart, cstop = coords[0], coords[-1] + 1 if cstop - cstart == len(coords): # Chances for monotonically increasing row values. Refine. inc_seq = np.all(np.arange(cstart, cstop) == np.array(coords)) if inc_seq: return self.read(cstart, cstop, field=field) return self.read_coordinates(coords, field)
(self, condition, condvars=None, field=None, start=None, stop=None, step=None)
728,927
tables.table
reindex
Recompute all the existing indexes in the table. This can be useful when you suspect that, for any reason, the index information for columns is no longer valid and want to rebuild the indexes on it.
def reindex(self): """Recompute all the existing indexes in the table. This can be useful when you suspect that, for any reason, the index information for columns is no longer valid and want to rebuild the indexes on it. """ self._do_reindex(dirty=False)
(self)
728,928
tables.table
reindex_dirty
Recompute the existing indexes in table, *if* they are dirty. This can be useful when you have set :attr:`Table.autoindex` (see :class:`Table`) to false for the table and you want to update the indexes after a invalidating index operation (:meth:`Table.remove_rows`, for example).
def reindex_dirty(self): """Recompute the existing indexes in table, *if* they are dirty. This can be useful when you have set :attr:`Table.autoindex` (see :class:`Table`) to false for the table and you want to update the indexes after a invalidating index operation (:meth:`Table.remove_rows`, for example). """ self._do_reindex(dirty=True)
(self)
728,930
tables.table
remove_row
Removes a row from the table. Parameters ---------- n : int The index of the row to remove. .. versionadded:: 3.0 Examples -------- Remove row 15:: table.remove_row(15) Which is equivalent to:: table.remove_rows(15, 16) .. warning:: This is not equivalent to:: table.remove_rows(15)
def remove_row(self, n): """Removes a row from the table. Parameters ---------- n : int The index of the row to remove. .. versionadded:: 3.0 Examples -------- Remove row 15:: table.remove_row(15) Which is equivalent to:: table.remove_rows(15, 16) .. warning:: This is not equivalent to:: table.remove_rows(15) """ self.remove_rows(start=n, stop=n + 1)
(self, n)
728,931
tables.table
remove_rows
Remove a range of rows in the table. If only start is supplied, that row and all following will be deleted. If a range is supplied, i.e. both the start and stop parameters are passed, all the rows in the range are removed. .. versionchanged:: 3.0 The start, stop and step parameters now behave like in slice. .. seealso:: remove_row() Parameters ---------- start : int Sets the starting row to be removed. It accepts negative values meaning that the count starts from the end. A value of 0 means the first row. stop : int Sets the last row to be removed to stop-1, i.e. the end point is omitted (in the Python range() tradition). Negative values are also accepted. If None all rows after start will be removed. step : int The step size between rows to remove. .. versionadded:: 3.0 Examples -------- Removing rows from 5 to 10 (excluded):: t.remove_rows(5, 10) Removing all rows starting from the 10th:: t.remove_rows(10) Removing the 6th row:: t.remove_rows(6, 7) .. note:: removing a single row can be done using the specific :meth:`remove_row` method.
def remove_rows(self, start=None, stop=None, step=None): """Remove a range of rows in the table. If only start is supplied, that row and all following will be deleted. If a range is supplied, i.e. both the start and stop parameters are passed, all the rows in the range are removed. .. versionchanged:: 3.0 The start, stop and step parameters now behave like in slice. .. seealso:: remove_row() Parameters ---------- start : int Sets the starting row to be removed. It accepts negative values meaning that the count starts from the end. A value of 0 means the first row. stop : int Sets the last row to be removed to stop-1, i.e. the end point is omitted (in the Python range() tradition). Negative values are also accepted. If None all rows after start will be removed. step : int The step size between rows to remove. .. versionadded:: 3.0 Examples -------- Removing rows from 5 to 10 (excluded):: t.remove_rows(5, 10) Removing all rows starting from the 10th:: t.remove_rows(10) Removing the 6th row:: t.remove_rows(6, 7) .. note:: removing a single row can be done using the specific :meth:`remove_row` method. """ (start, stop, step) = self._process_range(start, stop, step) nrows = self._remove_rows(start, stop, step) # remove_rows is a invalidating index operation self._reindex(self.colpathnames) return SizeType(nrows)
(self, start=None, stop=None, step=None)
728,935
tables.table
where
Iterate over values fulfilling a condition. This method returns a Row iterator (see :ref:`RowClassDescr`) which only selects rows in the table that satisfy the given condition (an expression-like string). The condvars mapping may be used to define the variable names appearing in the condition. condvars should consist of identifier-like strings pointing to Column (see :ref:`ColumnClassDescr`) instances *of this table*, or to other values (which will be converted to arrays). A default set of condition variables is provided where each top-level, non-nested column with an identifier-like name appears. Variables in condvars override the default ones. When condvars is not provided or None, the current local and global namespace is sought instead of condvars. The previous mechanism is mostly intended for interactive usage. To disable it, just specify a (maybe empty) mapping as condvars. If a range is supplied (by setting some of the start, stop or step parameters), only the rows in that range and fulfilling the condition are used. The meaning of the start, stop and step parameters is the same as for Python slices. When possible, indexed columns participating in the condition will be used to speed up the search. It is recommended that you place the indexed columns as left and out in the condition as possible. Anyway, this method has always better performance than regular Python selections on the table. You can mix this method with regular Python selections in order to support even more complex queries. It is strongly recommended that you pass the most restrictive condition as the parameter to this method if you want to achieve maximum performance. .. warning:: When in the middle of a table row iterator, you should not use methods that can change the number of rows in the table (like :meth:`Table.append` or :meth:`Table.remove_rows`) or unexpected errors will happen. Examples -------- :: passvalues = [ row['col3'] for row in table.where('(col1 > 0) & (col2 <= 20)', step=5) if your_function(row['col2']) ] print("Values that pass the cuts:", passvalues) .. note:: A special care should be taken when the query condition includes string literals. Let's assume that the table ``table`` has the following structure:: class Record(IsDescription): col1 = StringCol(4) # 4-character String of bytes col2 = IntCol() col3 = FloatCol() The type of "col1" corresponds to strings of bytes. Any condition involving "col1" should be written using the appropriate type for string literals in order to avoid :exc:`TypeError`\ s. The code below will fail with a :exc:`TypeError`:: condition = 'col1 == "AAAA"' for record in table.where(condition): # TypeError in Python3 # do something with "record" The reason is that in Python 3 "condition" implies a comparison between a string of bytes ("col1" contents) and a unicode literal ("AAAA"). The correct way to write the condition is:: condition = 'col1 == b"AAAA"' .. versionchanged:: 3.0 The start, stop and step parameters now behave like in slice.
def where(self, condition, condvars=None, start=None, stop=None, step=None): r"""Iterate over values fulfilling a condition. This method returns a Row iterator (see :ref:`RowClassDescr`) which only selects rows in the table that satisfy the given condition (an expression-like string). The condvars mapping may be used to define the variable names appearing in the condition. condvars should consist of identifier-like strings pointing to Column (see :ref:`ColumnClassDescr`) instances *of this table*, or to other values (which will be converted to arrays). A default set of condition variables is provided where each top-level, non-nested column with an identifier-like name appears. Variables in condvars override the default ones. When condvars is not provided or None, the current local and global namespace is sought instead of condvars. The previous mechanism is mostly intended for interactive usage. To disable it, just specify a (maybe empty) mapping as condvars. If a range is supplied (by setting some of the start, stop or step parameters), only the rows in that range and fulfilling the condition are used. The meaning of the start, stop and step parameters is the same as for Python slices. When possible, indexed columns participating in the condition will be used to speed up the search. It is recommended that you place the indexed columns as left and out in the condition as possible. Anyway, this method has always better performance than regular Python selections on the table. You can mix this method with regular Python selections in order to support even more complex queries. It is strongly recommended that you pass the most restrictive condition as the parameter to this method if you want to achieve maximum performance. .. warning:: When in the middle of a table row iterator, you should not use methods that can change the number of rows in the table (like :meth:`Table.append` or :meth:`Table.remove_rows`) or unexpected errors will happen. Examples -------- :: passvalues = [ row['col3'] for row in table.where('(col1 > 0) & (col2 <= 20)', step=5) if your_function(row['col2']) ] print("Values that pass the cuts:", passvalues) .. note:: A special care should be taken when the query condition includes string literals. Let's assume that the table ``table`` has the following structure:: class Record(IsDescription): col1 = StringCol(4) # 4-character String of bytes col2 = IntCol() col3 = FloatCol() The type of "col1" corresponds to strings of bytes. Any condition involving "col1" should be written using the appropriate type for string literals in order to avoid :exc:`TypeError`\ s. The code below will fail with a :exc:`TypeError`:: condition = 'col1 == "AAAA"' for record in table.where(condition): # TypeError in Python3 # do something with "record" The reason is that in Python 3 "condition" implies a comparison between a string of bytes ("col1" contents) and a unicode literal ("AAAA"). The correct way to write the condition is:: condition = 'col1 == b"AAAA"' .. versionchanged:: 3.0 The start, stop and step parameters now behave like in slice. """ return self._where(condition, condvars, start, stop, step)
(self, condition, condvars=None, start=None, stop=None, step=None)
728,936
tables.table
will_query_use_indexing
Will a query for the condition use indexing? The meaning of the condition and *condvars* arguments is the same as in the :meth:`Table.where` method. If condition can use indexing, this method returns a frozenset with the path names of the columns whose index is usable. Otherwise, it returns an empty list. This method is mainly intended for testing. Keep in mind that changing the set of indexed columns or their dirtiness may make this method return different values for the same arguments at different times.
def will_query_use_indexing(self, condition, condvars=None): """Will a query for the condition use indexing? The meaning of the condition and *condvars* arguments is the same as in the :meth:`Table.where` method. If condition can use indexing, this method returns a frozenset with the path names of the columns whose index is usable. Otherwise, it returns an empty list. This method is mainly intended for testing. Keep in mind that changing the set of indexed columns or their dirtiness may make this method return different values for the same arguments at different times. """ # Compile the condition and extract usable index conditions. condvars = self._required_expr_vars(condition, condvars, depth=2) compiled = self._compile_condition(condition, condvars) # Return the columns in indexed expressions idxcols = [condvars[var].pathname for var in compiled.index_variables] return frozenset(idxcols)
(self, condition, condvars=None)
728,937
tables.atom
Time32Atom
Defines an atom of type time32.
class Time32Atom(TimeAtom): """Defines an atom of type time32.""" itemsize = 4 type = 'time32' _defvalue = 0 def __init__(self, shape=(), dflt=_defvalue): Atom.__init__(self, 'int32', shape, dflt)
(shape=(), dflt=0)
728,939
tables.atom
__init__
null
def __init__(self, shape=(), dflt=_defvalue): Atom.__init__(self, 'int32', shape, dflt)
(self, shape=(), dflt=0)
728,945
tables.description
Time32Col
Defines a non-nested column of a particular type. The constructor accepts the same arguments as the equivalent `Atom` class, plus an additional ``pos`` argument for position information, which is assigned to the `_v_pos` attribute and an ``attrs`` argument for storing additional metadata similar to `table.attrs`, which is assigned to the `_v_col_attrs` attribute.
from tables.description import Time32Col
(*args, **kwargs)
728,953
tables.atom
Time64Atom
Defines an atom of type time64.
class Time64Atom(TimeAtom): """Defines an atom of type time64.""" itemsize = 8 type = 'time64' _defvalue = 0.0 def __init__(self, shape=(), dflt=_defvalue): Atom.__init__(self, 'float64', shape, dflt)
(shape=(), dflt=0.0)
728,955
tables.atom
__init__
null
def __init__(self, shape=(), dflt=_defvalue): Atom.__init__(self, 'float64', shape, dflt)
(self, shape=(), dflt=0.0)
728,961
tables.description
Time64Col
Defines a non-nested column of a particular type. The constructor accepts the same arguments as the equivalent `Atom` class, plus an additional ``pos`` argument for position information, which is assigned to the `_v_pos` attribute and an ``attrs`` argument for storing additional metadata similar to `table.attrs`, which is assigned to the `_v_col_attrs` attribute.
from tables.description import Time64Col
(*args, **kwargs)
728,969
tables.atom
TimeAtom
Defines an atom of time type (time kind). There are two distinct supported types of time: a 32 bit integer value and a 64 bit floating point value. Both of them reflect the number of seconds since the Unix epoch. This atom has the property of being stored using the HDF5 time datatypes.
class TimeAtom(Atom): """Defines an atom of time type (time kind). There are two distinct supported types of time: a 32 bit integer value and a 64 bit floating point value. Both of them reflect the number of seconds since the Unix epoch. This atom has the property of being stored using the HDF5 time datatypes. """ kind = 'time' _deftype = 'time32' _defvalue = 0 __init__ = _abstract_atom_init(_deftype, _defvalue)
(itemsize=4, shape=(), dflt=0)
728,977
tables.description
TimeCol
Defines a non-nested column of a particular type. The constructor accepts the same arguments as the equivalent `Atom` class, plus an additional ``pos`` argument for position information, which is assigned to the `_v_pos` attribute and an ``attrs`` argument for storing additional metadata similar to `table.attrs`, which is assigned to the `_v_col_attrs` attribute.
from tables.description import TimeCol
(*args, **kwargs)
728,985
tables.atom
UInt16Atom
Defines an atom of type ``uint16``.
from tables.atom import UInt16Atom
(shape=(), dflt=0)
728,993
tables.description
UInt16Col
Defines a non-nested column of a particular type. The constructor accepts the same arguments as the equivalent `Atom` class, plus an additional ``pos`` argument for position information, which is assigned to the `_v_pos` attribute and an ``attrs`` argument for storing additional metadata similar to `table.attrs`, which is assigned to the `_v_col_attrs` attribute.
from tables.description import UInt16Col
(*args, **kwargs)
729,001
tables.atom
UInt32Atom
Defines an atom of type ``uint32``.
from tables.atom import UInt32Atom
(shape=(), dflt=0)
729,009
tables.description
UInt32Col
Defines a non-nested column of a particular type. The constructor accepts the same arguments as the equivalent `Atom` class, plus an additional ``pos`` argument for position information, which is assigned to the `_v_pos` attribute and an ``attrs`` argument for storing additional metadata similar to `table.attrs`, which is assigned to the `_v_col_attrs` attribute.
from tables.description import UInt32Col
(*args, **kwargs)
729,017
tables.atom
UInt64Atom
Defines an atom of type ``uint64``.
from tables.atom import UInt64Atom
(shape=(), dflt=0)
729,025
tables.description
UInt64Col
Defines a non-nested column of a particular type. The constructor accepts the same arguments as the equivalent `Atom` class, plus an additional ``pos`` argument for position information, which is assigned to the `_v_pos` attribute and an ``attrs`` argument for storing additional metadata similar to `table.attrs`, which is assigned to the `_v_col_attrs` attribute.
from tables.description import UInt64Col
(*args, **kwargs)
729,033
tables.atom
UInt8Atom
Defines an atom of type ``uint8``.
from tables.atom import UInt8Atom
(shape=(), dflt=0)
729,041
tables.description
UInt8Col
Defines a non-nested column of a particular type. The constructor accepts the same arguments as the equivalent `Atom` class, plus an additional ``pos`` argument for position information, which is assigned to the `_v_pos` attribute and an ``attrs`` argument for storing additional metadata similar to `table.attrs`, which is assigned to the `_v_col_attrs` attribute.
from tables.description import UInt8Col
(*args, **kwargs)
729,049
tables.atom
UIntAtom
Defines an atom of an unsigned integral type (uint kind).
class UIntAtom(Atom): """Defines an atom of an unsigned integral type (uint kind).""" kind = 'uint' signed = False _deftype = 'uint32' _defvalue = 0 __init__ = _abstract_atom_init(_deftype, _defvalue)
(itemsize=4, shape=(), dflt=0)
729,057
tables.description
UIntCol
Defines a non-nested column of a particular type. The constructor accepts the same arguments as the equivalent `Atom` class, plus an additional ``pos`` argument for position information, which is assigned to the `_v_pos` attribute and an ``attrs`` argument for storing additional metadata similar to `table.attrs`, which is assigned to the `_v_col_attrs` attribute.
from tables.description import UIntCol
(*args, **kwargs)
729,065
tables.unimplemented
UnImplemented
This class represents datasets not supported by PyTables in an HDF5 file. When reading a generic HDF5 file (i.e. one that has not been created with PyTables, but with some other HDF5 library based tool), chances are that the specific combination of datatypes or dataspaces in some dataset might not be supported by PyTables yet. In such a case, this dataset will be mapped into an UnImplemented instance and the user will still be able to access the complete object tree of the generic HDF5 file. The user will also be able to *read and write the attributes* of the dataset, *access some of its metadata*, and perform *certain hierarchy manipulation operations* like deleting or moving (but not copying) the node. Of course, the user will not be able to read the actual data on it. This is an elegant way to allow users to work with generic HDF5 files despite the fact that some of its datasets are not supported by PyTables. However, if you are really interested in having full access to an unimplemented dataset, please get in contact with the developer team. This class does not have any public instance variables or methods, except those inherited from the Leaf class (see :ref:`LeafClassDescr`).
class UnImplemented(hdf5extension.UnImplemented, Leaf): """This class represents datasets not supported by PyTables in an HDF5 file. When reading a generic HDF5 file (i.e. one that has not been created with PyTables, but with some other HDF5 library based tool), chances are that the specific combination of datatypes or dataspaces in some dataset might not be supported by PyTables yet. In such a case, this dataset will be mapped into an UnImplemented instance and the user will still be able to access the complete object tree of the generic HDF5 file. The user will also be able to *read and write the attributes* of the dataset, *access some of its metadata*, and perform *certain hierarchy manipulation operations* like deleting or moving (but not copying) the node. Of course, the user will not be able to read the actual data on it. This is an elegant way to allow users to work with generic HDF5 files despite the fact that some of its datasets are not supported by PyTables. However, if you are really interested in having full access to an unimplemented dataset, please get in contact with the developer team. This class does not have any public instance variables or methods, except those inherited from the Leaf class (see :ref:`LeafClassDescr`). """ # Class identifier. _c_classid = 'UNIMPLEMENTED' def __init__(self, parentnode, name): """Create the `UnImplemented` instance.""" # UnImplemented objects always come from opening an existing node # (they can not be created). self._v_new = False """Is this the first time the node has been created?""" self.nrows = SizeType(0) """The length of the first dimension of the data.""" self.shape = (SizeType(0),) """The shape of the stored data.""" self.byteorder = None """The endianness of data in memory ('big', 'little' or 'irrelevant').""" super().__init__(parentnode, name) def _g_open(self): (self.shape, self.byteorder, object_id) = self._open_unimplemented() try: self.nrows = SizeType(self.shape[0]) except IndexError: self.nrows = SizeType(0) return object_id def _g_copy(self, newparent, newname, recursive, _log=True, **kwargs): """Do nothing. This method does nothing, but a ``UserWarning`` is issued. Please note that this method *does not return a new node*, but ``None``. """ warnings.warn( "UnImplemented node %r does not know how to copy itself; skipping" % (self._v_pathname,)) return None # Can you see it? def _f_copy(self, newparent=None, newname=None, overwrite=False, recursive=False, createparents=False, **kwargs): """Do nothing. This method does nothing, since `UnImplemented` nodes can not be copied. However, a ``UserWarning`` is issued. Please note that this method *does not return a new node*, but ``None``. """ # This also does nothing but warn. self._g_copy(newparent, newname, recursive, **kwargs) return None # Can you see it? def __repr__(self): return """{} NOTE: <The UnImplemented object represents a PyTables unimplemented dataset present in the '{}' HDF5 file. If you want to see this kind of HDF5 dataset implemented in PyTables, please contact the developers.> """.format(str(self), self._v_file.filename)
(parentnode, name)
729,067
tables.unimplemented
__init__
Create the `UnImplemented` instance.
def __init__(self, parentnode, name): """Create the `UnImplemented` instance.""" # UnImplemented objects always come from opening an existing node # (they can not be created). self._v_new = False """Is this the first time the node has been created?""" self.nrows = SizeType(0) """The length of the first dimension of the data.""" self.shape = (SizeType(0),) """The shape of the stored data.""" self.byteorder = None """The endianness of data in memory ('big', 'little' or 'irrelevant').""" super().__init__(parentnode, name)
(self, parentnode, name)
729,069
tables.unimplemented
__repr__
null
"""Here is defined the UnImplemented class.""" import warnings from . import hdf5extension from .utils import SizeType from .node import Node from .leaf import Leaf class UnImplemented(hdf5extension.UnImplemented, Leaf): """This class represents datasets not supported by PyTables in an HDF5 file. When reading a generic HDF5 file (i.e. one that has not been created with PyTables, but with some other HDF5 library based tool), chances are that the specific combination of datatypes or dataspaces in some dataset might not be supported by PyTables yet. In such a case, this dataset will be mapped into an UnImplemented instance and the user will still be able to access the complete object tree of the generic HDF5 file. The user will also be able to *read and write the attributes* of the dataset, *access some of its metadata*, and perform *certain hierarchy manipulation operations* like deleting or moving (but not copying) the node. Of course, the user will not be able to read the actual data on it. This is an elegant way to allow users to work with generic HDF5 files despite the fact that some of its datasets are not supported by PyTables. However, if you are really interested in having full access to an unimplemented dataset, please get in contact with the developer team. This class does not have any public instance variables or methods, except those inherited from the Leaf class (see :ref:`LeafClassDescr`). """ # Class identifier. _c_classid = 'UNIMPLEMENTED' def __init__(self, parentnode, name): """Create the `UnImplemented` instance.""" # UnImplemented objects always come from opening an existing node # (they can not be created). self._v_new = False """Is this the first time the node has been created?""" self.nrows = SizeType(0) """The length of the first dimension of the data.""" self.shape = (SizeType(0),) """The shape of the stored data.""" self.byteorder = None """The endianness of data in memory ('big', 'little' or 'irrelevant').""" super().__init__(parentnode, name) def _g_open(self): (self.shape, self.byteorder, object_id) = self._open_unimplemented() try: self.nrows = SizeType(self.shape[0]) except IndexError: self.nrows = SizeType(0) return object_id def _g_copy(self, newparent, newname, recursive, _log=True, **kwargs): """Do nothing. This method does nothing, but a ``UserWarning`` is issued. Please note that this method *does not return a new node*, but ``None``. """ warnings.warn( "UnImplemented node %r does not know how to copy itself; skipping" % (self._v_pathname,)) return None # Can you see it? def _f_copy(self, newparent=None, newname=None, overwrite=False, recursive=False, createparents=False, **kwargs): """Do nothing. This method does nothing, since `UnImplemented` nodes can not be copied. However, a ``UserWarning`` is issued. Please note that this method *does not return a new node*, but ``None``. """ # This also does nothing but warn. self._g_copy(newparent, newname, recursive, **kwargs) return None # Can you see it? def __repr__(self): return """{} NOTE: <The UnImplemented object represents a PyTables unimplemented dataset present in the '{}' HDF5 file. If you want to see this kind of HDF5 dataset implemented in PyTables, please contact the developers.> """.format(str(self), self._v_file.filename)
(self)
729,074
tables.unimplemented
_f_copy
Do nothing. This method does nothing, since `UnImplemented` nodes can not be copied. However, a ``UserWarning`` is issued. Please note that this method *does not return a new node*, but ``None``.
def _f_copy(self, newparent=None, newname=None, overwrite=False, recursive=False, createparents=False, **kwargs): """Do nothing. This method does nothing, since `UnImplemented` nodes can not be copied. However, a ``UserWarning`` is issued. Please note that this method *does not return a new node*, but ``None``. """ # This also does nothing but warn. self._g_copy(newparent, newname, recursive, **kwargs) return None # Can you see it?
(self, newparent=None, newname=None, overwrite=False, recursive=False, createparents=False, **kwargs)
729,086
tables.unimplemented
_g_copy
Do nothing. This method does nothing, but a ``UserWarning`` is issued. Please note that this method *does not return a new node*, but ``None``.
def _g_copy(self, newparent, newname, recursive, _log=True, **kwargs): """Do nothing. This method does nothing, but a ``UserWarning`` is issued. Please note that this method *does not return a new node*, but ``None``. """ warnings.warn( "UnImplemented node %r does not know how to copy itself; skipping" % (self._v_pathname,)) return None # Can you see it?
(self, newparent, newname, recursive, _log=True, **kwargs)
729,097
tables.unimplemented
_g_open
null
def _g_open(self): (self.shape, self.byteorder, object_id) = self._open_unimplemented() try: self.nrows = SizeType(self.shape[0]) except IndexError: self.nrows = SizeType(0) return object_id
(self)
729,120
tables.exceptions
UnclosedFileWarning
Warning raised when there are still open files at program exit Pytables will close remaining open files at exit, but raise this warning.
class UnclosedFileWarning(Warning): """Warning raised when there are still open files at program exit Pytables will close remaining open files at exit, but raise this warning. """ pass
null
729,121
tables.exceptions
UndoRedoError
Problems with doing/redoing actions with Undo/Redo feature. This exception indicates a problem related to the Undo/Redo mechanism, such as trying to undo or redo actions with this mechanism disabled, or going to a nonexistent mark.
class UndoRedoError(Exception): """Problems with doing/redoing actions with Undo/Redo feature. This exception indicates a problem related to the Undo/Redo mechanism, such as trying to undo or redo actions with this mechanism disabled, or going to a nonexistent mark. """ pass
null
729,122
tables.exceptions
UndoRedoWarning
Issued when an action not supporting Undo/Redo is run. This warning is only shown when the Undo/Redo mechanism is enabled.
class UndoRedoWarning(Warning): """Issued when an action not supporting Undo/Redo is run. This warning is only shown when the Undo/Redo mechanism is enabled. """ pass
null
729,123
tables.unimplemented
Unknown
This class represents nodes reported as *unknown* by the underlying HDF5 library. This class does not have any public instance variables or methods, except those inherited from the Node class.
class Unknown(Node): """This class represents nodes reported as *unknown* by the underlying HDF5 library. This class does not have any public instance variables or methods, except those inherited from the Node class. """ # Class identifier _c_classid = 'UNKNOWN' def __init__(self, parentnode, name): """Create the `Unknown` instance.""" self._v_new = False super().__init__(parentnode, name) def _g_new(self, parentnode, name, init=False): pass def _g_open(self): return 0 def _g_copy(self, newparent, newname, recursive, _log=True, **kwargs): # Silently avoid doing copies of unknown nodes return None def _g_delete(self, parent): pass def __str__(self): pathname = self._v_pathname classname = self.__class__.__name__ return f"{pathname} ({classname})" def __repr__(self): return f"""{self!s} NOTE: <The Unknown object represents a node which is reported as unknown by the underlying HDF5 library, but that might be supported in more recent HDF5 versions.> """
(parentnode, name)
729,125
tables.unimplemented
__init__
Create the `Unknown` instance.
def __init__(self, parentnode, name): """Create the `Unknown` instance.""" self._v_new = False super().__init__(parentnode, name)
(self, parentnode, name)
729,141
tables.unimplemented
_g_copy
null
def _g_copy(self, newparent, newname, recursive, _log=True, **kwargs): # Silently avoid doing copies of unknown nodes return None
(self, newparent, newname, recursive, _log=True, **kwargs)
729,145
tables.unimplemented
_g_delete
null
def _g_delete(self, parent): pass
(self, parent)
729,152
tables.unimplemented
_g_new
null
def _g_new(self, parentnode, name, init=False): pass
(self, parentnode, name, init=False)
729,153
tables.unimplemented
_g_open
null
def _g_open(self): return 0
(self)
729,162
tables.vlarray
VLArray
This class represents variable length (ragged) arrays in an HDF5 file. Instances of this class represent array objects in the object tree with the property that their rows can have a *variable* number of homogeneous elements, called *atoms*. Like Table datasets (see :ref:`TableClassDescr`), variable length arrays can have only one dimension, and the elements (atoms) of their rows can be fully multidimensional. When reading a range of rows from a VLArray, you will *always* get a Python list of objects of the current flavor (each of them for a row), which may have different lengths. This class provides methods to write or read data to or from variable length array objects in the file. Note that it also inherits all the public attributes and methods that Leaf (see :ref:`LeafClassDescr`) already provides. .. note:: VLArray objects also support compression although compression is only performed on the data structures used internally by the HDF5 to take references of the location of the variable length data. Data itself (the raw data) are not compressed or filtered. Please refer to the `VLTypes Technical Note <https://support.hdfgroup.org/HDF5/doc/TechNotes/VLTypes.html>`_ for more details on the topic. Parameters ---------- parentnode The parent :class:`Group` object. name : str The name of this node in its parent group. atom An `Atom` instance representing the *type* and *shape* of the atomic objects to be saved. title A description for this node (it sets the ``TITLE`` HDF5 attribute on disk). filters An instance of the `Filters` class that provides information about the desired I/O filters to be applied during the life of this object. expectedrows A user estimate about the number of row elements that will be added to the growable dimension in the `VLArray` node. If not provided, the default value is ``EXPECTED_ROWS_VLARRAY`` (see ``tables/parameters.py``). If you plan to create either a much smaller or a much bigger `VLArray` try providing a guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of memory used. .. versionadded:: 3.0 chunkshape The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters are applied to those chunks of data. The dimensionality of `chunkshape` must be 1. If ``None``, a sensible value is calculated (which is recommended). byteorder The byteorder of the data *on disk*, specified as 'little' or 'big'. If this is not specified, the byteorder is that of the platform. track_times Whether time data associated with the leaf are recorded (object access time, raw data modification time, metadata change time, object birth time); default True. Semantics of these times depend on their implementation in the HDF5 library: refer to documentation of the H5O_info_t data structure. As of HDF5 1.8.15, only ctime (metadata change time) is implemented. .. versionadded:: 3.4.3 .. versionchanged:: 3.0 *parentNode* renamed into *parentnode*. .. versionchanged:: 3.0 The *expectedsizeinMB* parameter has been replaced by *expectedrows*. Examples -------- See below a small example of the use of the VLArray class. The code is available in :file:`examples/vlarray1.py`:: import numpy as np import tables as tb # Create a VLArray: fileh = tb.open_file('vlarray1.h5', mode='w') vlarray = fileh.create_vlarray( fileh.root, 'vlarray1', tb.Int32Atom(shape=()), "ragged array of ints", filters=tb.Filters(1)) # Append some (variable length) rows: vlarray.append(np.array([5, 6])) vlarray.append(np.array([5, 6, 7])) vlarray.append([5, 6, 9, 8]) # Now, read it through an iterator: print('-->', vlarray.title) for x in vlarray: print('%s[%d]--> %s' % (vlarray.name, vlarray.nrow, x)) # Now, do the same with native Python strings. vlarray2 = fileh.create_vlarray( fileh.root, 'vlarray2', tb.StringAtom(itemsize=2), "ragged array of strings", filters=tb.Filters(1)) vlarray2.flavor = 'python' # Append some (variable length) rows: print('-->', vlarray2.title) vlarray2.append(['5', '66']) vlarray2.append(['5', '6', '77']) vlarray2.append(['5', '6', '9', '88']) # Now, read it through an iterator: for x in vlarray2: print('%s[%d]--> %s' % (vlarray2.name, vlarray2.nrow, x)) # Close the file. fileh.close() The output for the previous script is something like:: --> ragged array of ints vlarray1[0]--> [5 6] vlarray1[1]--> [5 6 7] vlarray1[2]--> [5 6 9 8] --> ragged array of strings vlarray2[0]--> ['5', '66'] vlarray2[1]--> ['5', '6', '77'] vlarray2[2]--> ['5', '6', '9', '88'] .. rubric:: VLArray attributes The instance variables below are provided in addition to those in Leaf (see :ref:`LeafClassDescr`). .. attribute:: atom An Atom (see :ref:`AtomClassDescr`) instance representing the *type* and *shape* of the atomic objects to be saved. You may use a *pseudo-atom* for storing a serialized object or variable length string per row. .. attribute:: flavor The type of data object read from this leaf. Please note that when reading several rows of VLArray data, the flavor only applies to the *components* of the returned Python list, not to the list itself. .. attribute:: nrow On iterators, this is the index of the current row. .. attribute:: nrows The current number of rows in the array. .. attribute:: extdim The index of the enlargeable dimension (always 0 for vlarrays).
class VLArray(hdf5extension.VLArray, Leaf): """This class represents variable length (ragged) arrays in an HDF5 file. Instances of this class represent array objects in the object tree with the property that their rows can have a *variable* number of homogeneous elements, called *atoms*. Like Table datasets (see :ref:`TableClassDescr`), variable length arrays can have only one dimension, and the elements (atoms) of their rows can be fully multidimensional. When reading a range of rows from a VLArray, you will *always* get a Python list of objects of the current flavor (each of them for a row), which may have different lengths. This class provides methods to write or read data to or from variable length array objects in the file. Note that it also inherits all the public attributes and methods that Leaf (see :ref:`LeafClassDescr`) already provides. .. note:: VLArray objects also support compression although compression is only performed on the data structures used internally by the HDF5 to take references of the location of the variable length data. Data itself (the raw data) are not compressed or filtered. Please refer to the `VLTypes Technical Note <https://support.hdfgroup.org/HDF5/doc/TechNotes/VLTypes.html>`_ for more details on the topic. Parameters ---------- parentnode The parent :class:`Group` object. name : str The name of this node in its parent group. atom An `Atom` instance representing the *type* and *shape* of the atomic objects to be saved. title A description for this node (it sets the ``TITLE`` HDF5 attribute on disk). filters An instance of the `Filters` class that provides information about the desired I/O filters to be applied during the life of this object. expectedrows A user estimate about the number of row elements that will be added to the growable dimension in the `VLArray` node. If not provided, the default value is ``EXPECTED_ROWS_VLARRAY`` (see ``tables/parameters.py``). If you plan to create either a much smaller or a much bigger `VLArray` try providing a guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of memory used. .. versionadded:: 3.0 chunkshape The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters are applied to those chunks of data. The dimensionality of `chunkshape` must be 1. If ``None``, a sensible value is calculated (which is recommended). byteorder The byteorder of the data *on disk*, specified as 'little' or 'big'. If this is not specified, the byteorder is that of the platform. track_times Whether time data associated with the leaf are recorded (object access time, raw data modification time, metadata change time, object birth time); default True. Semantics of these times depend on their implementation in the HDF5 library: refer to documentation of the H5O_info_t data structure. As of HDF5 1.8.15, only ctime (metadata change time) is implemented. .. versionadded:: 3.4.3 .. versionchanged:: 3.0 *parentNode* renamed into *parentnode*. .. versionchanged:: 3.0 The *expectedsizeinMB* parameter has been replaced by *expectedrows*. Examples -------- See below a small example of the use of the VLArray class. The code is available in :file:`examples/vlarray1.py`:: import numpy as np import tables as tb # Create a VLArray: fileh = tb.open_file('vlarray1.h5', mode='w') vlarray = fileh.create_vlarray( fileh.root, 'vlarray1', tb.Int32Atom(shape=()), "ragged array of ints", filters=tb.Filters(1)) # Append some (variable length) rows: vlarray.append(np.array([5, 6])) vlarray.append(np.array([5, 6, 7])) vlarray.append([5, 6, 9, 8]) # Now, read it through an iterator: print('-->', vlarray.title) for x in vlarray: print('%s[%d]--> %s' % (vlarray.name, vlarray.nrow, x)) # Now, do the same with native Python strings. vlarray2 = fileh.create_vlarray( fileh.root, 'vlarray2', tb.StringAtom(itemsize=2), "ragged array of strings", filters=tb.Filters(1)) vlarray2.flavor = 'python' # Append some (variable length) rows: print('-->', vlarray2.title) vlarray2.append(['5', '66']) vlarray2.append(['5', '6', '77']) vlarray2.append(['5', '6', '9', '88']) # Now, read it through an iterator: for x in vlarray2: print('%s[%d]--> %s' % (vlarray2.name, vlarray2.nrow, x)) # Close the file. fileh.close() The output for the previous script is something like:: --> ragged array of ints vlarray1[0]--> [5 6] vlarray1[1]--> [5 6 7] vlarray1[2]--> [5 6 9 8] --> ragged array of strings vlarray2[0]--> ['5', '66'] vlarray2[1]--> ['5', '6', '77'] vlarray2[2]--> ['5', '6', '9', '88'] .. rubric:: VLArray attributes The instance variables below are provided in addition to those in Leaf (see :ref:`LeafClassDescr`). .. attribute:: atom An Atom (see :ref:`AtomClassDescr`) instance representing the *type* and *shape* of the atomic objects to be saved. You may use a *pseudo-atom* for storing a serialized object or variable length string per row. .. attribute:: flavor The type of data object read from this leaf. Please note that when reading several rows of VLArray data, the flavor only applies to the *components* of the returned Python list, not to the list itself. .. attribute:: nrow On iterators, this is the index of the current row. .. attribute:: nrows The current number of rows in the array. .. attribute:: extdim The index of the enlargeable dimension (always 0 for vlarrays). """ # Class identifier. _c_classid = 'VLARRAY' @lazyattr def dtype(self): """The NumPy ``dtype`` that most closely matches this array.""" return self.atom.dtype @property def shape(self): """The shape of the stored array.""" return (self.nrows,) @property def size_on_disk(self): """ The HDF5 library does not include a function to determine size_on_disk for variable-length arrays. Accessing this attribute will raise a NotImplementedError. """ raise NotImplementedError('size_on_disk not implemented for VLArrays') @property def size_in_memory(self): """ The size of this array's data in bytes when it is fully loaded into memory. .. note:: When data is stored in a VLArray using the ObjectAtom type, it is first serialized using pickle, and then converted to a NumPy array suitable for storage in an HDF5 file. This attribute will return the size of that NumPy representation. If you wish to know the size of the Python objects after they are loaded from disk, you can use this `ActiveState recipe <http://code.activestate.com/recipes/577504/>`_. """ return self._get_memory_size() def __init__(self, parentnode, name, atom=None, title="", filters=None, expectedrows=None, chunkshape=None, byteorder=None, _log=True, track_times=True): self._v_version = None """The object version of this array.""" self._v_new = new = atom is not None """Is this the first time the node has been created?""" self._v_new_title = title """New title for this node.""" self._v_new_filters = filters """New filter properties for this array.""" if expectedrows is None: expectedrows = parentnode._v_file.params['EXPECTED_ROWS_VLARRAY'] self._v_expectedrows = expectedrows """The expected number of rows to be stored in the array. .. versionadded:: 3.0 """ self._v_chunkshape = None """Private storage for the `chunkshape` property of Leaf.""" # Miscellaneous iteration rubbish. self._start = None """Starting row for the current iteration.""" self._stop = None """Stopping row for the current iteration.""" self._step = None """Step size for the current iteration.""" self._nrowsread = None """Number of rows read up to the current state of iteration.""" self._startb = None """Starting row for current buffer.""" self._stopb = None """Stopping row for current buffer. """ self._row = None """Current row in iterators (sentinel).""" self._init = False """Whether we are in the middle of an iteration or not (sentinel).""" self.listarr = None """Current buffer in iterators.""" # Documented (*public*) attributes. self.atom = atom """ An Atom (see :ref:`AtomClassDescr`) instance representing the *type* and *shape* of the atomic objects to be saved. You may use a *pseudo-atom* for storing a serialized object or variable length string per row. """ self.nrow = None """On iterators, this is the index of the current row.""" self.nrows = None """The current number of rows in the array.""" self.extdim = 0 # VLArray only have one dimension currently """The index of the enlargeable dimension (always 0 for vlarrays).""" # Check the chunkshape parameter if new and chunkshape is not None: if isinstance(chunkshape, (int, np.integer)): chunkshape = (chunkshape,) try: chunkshape = tuple(chunkshape) except TypeError: raise TypeError( "`chunkshape` parameter must be an integer or sequence " "and you passed a %s" % type(chunkshape)) if len(chunkshape) != 1: raise ValueError("`chunkshape` rank (length) must be 1: %r" % (chunkshape,)) self._v_chunkshape = tuple(SizeType(s) for s in chunkshape) super().__init__(parentnode, name, new, filters, byteorder, _log, track_times) def _g_post_init_hook(self): super()._g_post_init_hook() self.nrowsinbuf = 100 # maybe enough for most applications # This is too specific for moving it into Leaf def _calc_chunkshape(self, expectedrows): """Calculate the size for the HDF5 chunk.""" # For computing the chunkshape for HDF5 VL types, we have to # choose the itemsize of the *each* element of the atom and # not the size of the entire atom. I don't know why this # should be like this, perhaps I should report this to the # HDF5 list. # F. Alted 2006-11-23 # elemsize = self.atom.atomsize() elemsize = self._basesize # AV 2013-05-03 # This is just a quick workaround tha allows to change the API for # PyTables 3.0 release and remove the expected_mb parameter. # The algorithm for computing the chunkshape should be rewritten as # requested by gh-35. expected_mb = expectedrows * elemsize / 1024 ** 2 chunksize = calc_chunksize(expected_mb) # Set the chunkshape chunkshape = chunksize // elemsize # Safeguard against itemsizes being extremely large if chunkshape == 0: chunkshape = 1 return (SizeType(chunkshape),) def _g_create(self): """Create a variable length array (ragged array).""" atom = self.atom self._v_version = obversion # Check for zero dims in atom shape (not allowed in VLArrays) zerodims = np.sum(np.array(atom.shape) == 0) if zerodims > 0: raise ValueError("When creating VLArrays, none of the dimensions " "of the Atom instance can be zero.") if not hasattr(atom, 'size'): # it is a pseudo-atom self._atomicdtype = atom.base.dtype self._atomicsize = atom.base.size self._basesize = atom.base.itemsize else: self._atomicdtype = atom.dtype self._atomicsize = atom.size self._basesize = atom.itemsize self._atomictype = atom.type self._atomicshape = atom.shape # Compute the optimal chunkshape, if needed if self._v_chunkshape is None: self._v_chunkshape = self._calc_chunkshape(self._v_expectedrows) self.nrows = SizeType(0) # No rows at creation time # Correct the byteorder if needed if self.byteorder is None: self.byteorder = correct_byteorder(atom.type, sys.byteorder) # After creating the vlarray, ``self._v_objectid`` needs to be # set because it is needed for setting attributes afterwards. self._v_objectid = self._create_array(self._v_new_title) # Add an attribute in case we have a pseudo-atom so that we # can retrieve the proper class after a re-opening operation. if not hasattr(atom, 'size'): # it is a pseudo-atom self.attrs.PSEUDOATOM = atom.kind return self._v_objectid def _g_open(self): """Get the metadata info for an array in file.""" self._v_objectid, self.nrows, self._v_chunkshape, atom = \ self._open_array() # Check if the atom can be a PseudoAtom if "PSEUDOATOM" in self.attrs: kind = self.attrs.PSEUDOATOM if kind == 'vlstring': atom = VLStringAtom() elif kind == 'vlunicode': atom = VLUnicodeAtom() elif kind == 'object': atom = ObjectAtom() else: raise ValueError( "pseudo-atom name ``%s`` not known." % kind) elif self._v_file.format_version[:1] == "1": flavor1x = self.attrs.FLAVOR if flavor1x == "VLString": atom = VLStringAtom() elif flavor1x == "Object": atom = ObjectAtom() self.atom = atom return self._v_objectid def _getnobjects(self, nparr): """Return the number of objects in a NumPy array.""" # Check for zero dimensionality array zerodims = np.sum(np.array(nparr.shape) == 0) if zerodims > 0: # No objects to be added return 0 shape = nparr.shape atom_shape = self.atom.shape shapelen = len(nparr.shape) if isinstance(atom_shape, tuple): atomshapelen = len(self.atom.shape) else: atom_shape = (self.atom.shape,) atomshapelen = 1 diflen = shapelen - atomshapelen if shape == atom_shape: nobjects = 1 elif (diflen == 1 and shape[diflen:] == atom_shape): # Check if the leading dimensions are all ones # if shape[:diflen-1] == (1,)*(diflen-1): # nobjects = shape[diflen-1] # shape = shape[diflen:] # It's better to accept only inputs with the exact dimensionality # i.e. a dimensionality only 1 element larger than atom nobjects = shape[0] shape = shape[1:] elif atom_shape == (1,) and shapelen == 1: # Case where shape = (N,) and shape_atom = 1 or (1,) nobjects = shape[0] else: raise ValueError("The object '%s' is composed of elements with " "shape '%s', which is not compatible with the " "atom shape ('%s')." % (nparr, shape, atom_shape)) return nobjects def get_enum(self): """Get the enumerated type associated with this array. If this array is of an enumerated type, the corresponding Enum instance (see :ref:`EnumClassDescr`) is returned. If it is not of an enumerated type, a TypeError is raised. """ if self.atom.kind != 'enum': raise TypeError("array ``%s`` is not of an enumerated type" % self._v_pathname) return self.atom.enum def append(self, sequence): """Add a sequence of data to the end of the dataset. This method appends the objects in the sequence to a *single row* in this array. The type and shape of individual objects must be compliant with the atoms in the array. In the case of serialized objects and variable length strings, the object or string to append is itself the sequence. """ self._g_check_open() self._v_file._check_writable() # Prepare the sequence to convert it into a NumPy object atom = self.atom if not hasattr(atom, 'size'): # it is a pseudo-atom sequence = atom.toarray(sequence) statom = atom.base else: try: # fastest check in most cases len(sequence) except TypeError: raise TypeError("argument is not a sequence") statom = atom if len(sequence) > 0: # The sequence needs to be copied to make the operation safe # to in-place conversion. nparr = convert_to_np_atom2(sequence, statom) nobjects = self._getnobjects(nparr) else: nobjects = 0 nparr = None self._append(nparr, nobjects) self.nrows += 1 def iterrows(self, start=None, stop=None, step=None): """Iterate over the rows of the array. This method returns an iterator yielding an object of the current flavor for each selected row in the array. If a range is not supplied, *all the rows* in the array are iterated upon. You can also use the :meth:`VLArray.__iter__` special method for that purpose. If you only want to iterate over a given *range of rows* in the array, you may use the start, stop and step parameters. Examples -------- :: for row in vlarray.iterrows(step=4): print('%s[%d]--> %s' % (vlarray.name, vlarray.nrow, row)) .. versionchanged:: 3.0 If the *start* parameter is provided and *stop* is None then the array is iterated from *start* to the last line. In PyTables < 3.0 only one element was returned. """ (self._start, self._stop, self._step) = self._process_range( start, stop, step) self._init_loop() return self def __iter__(self): """Iterate over the rows of the array. This is equivalent to calling :meth:`VLArray.iterrows` with default arguments, i.e. it iterates over *all the rows* in the array. Examples -------- :: result = [row for row in vlarray] Which is equivalent to:: result = [row for row in vlarray.iterrows()] """ if not self._init: # If the iterator is called directly, assign default variables self._start = 0 self._stop = self.nrows self._step = 1 # and initialize the loop self._init_loop() return self def _init_loop(self): """Initialization for the __iter__ iterator.""" self._nrowsread = self._start self._startb = self._start self._row = -1 # Sentinel self._init = True # Sentinel self.nrow = SizeType(self._start - self._step) # row number def __next__(self): """Get the next element of the array during an iteration. The element is returned as a list of objects of the current flavor. """ if self._nrowsread >= self._stop: self._init = False raise StopIteration # end of iteration else: # Read a chunk of rows if self._row + 1 >= self.nrowsinbuf or self._row < 0: self._stopb = self._startb + self._step * self.nrowsinbuf self.listarr = self.read(self._startb, self._stopb, self._step) self._row = -1 self._startb = self._stopb self._row += 1 self.nrow += self._step self._nrowsread += self._step return self.listarr[self._row] def __getitem__(self, key): """Get a row or a range of rows from the array. If key argument is an integer, the corresponding array row is returned as an object of the current flavor. If key is a slice, the range of rows determined by it is returned as a list of objects of the current flavor. In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the set of rows determined by it is returned. Furthermore, if key is an array of boolean values, only the coordinates where key is True are returned. Note that for the latter to work it is necessary that key list would contain exactly as many rows as the array has. Examples -------- :: a_row = vlarray[4] a_list = vlarray[4:1000:2] a_list2 = vlarray[[0,2]] # get list of coords a_list3 = vlarray[[0,-2]] # negative values accepted a_list4 = vlarray[np.array([True,...,False])] # array of bools """ self._g_check_open() if is_idx(key): key = operator.index(key) # Index out of range protection if key >= self.nrows: raise IndexError("Index out of range") if key < 0: # To support negative values key += self.nrows (start, stop, step) = self._process_range(key, key + 1, 1) return self.read(start, stop, step)[0] elif isinstance(key, slice): start, stop, step = self._process_range( key.start, key.stop, key.step) return self.read(start, stop, step) # Try with a boolean or point selection elif type(key) in (list, tuple) or isinstance(key, np.ndarray): coords = self._point_selection(key) return self._read_coordinates(coords) else: raise IndexError(f"Invalid index or slice: {key!r}") def _assign_values(self, coords, values): """Assign the `values` to the positions stated in `coords`.""" for nrow, value in zip(coords, values): if nrow >= self.nrows: raise IndexError("First index out of range") if nrow < 0: # To support negative values nrow += self.nrows object_ = value # Prepare the object to convert it into a NumPy object atom = self.atom if not hasattr(atom, 'size'): # it is a pseudo-atom object_ = atom.toarray(object_) statom = atom.base else: statom = atom value = convert_to_np_atom(object_, statom) nobjects = self._getnobjects(value) # Get the previous value nrow = idx2long( nrow) # To convert any possible numpy scalar value nparr = self._read_array(nrow, nrow + 1, 1)[0] nobjects = len(nparr) if len(value) > nobjects: raise ValueError("Length of value (%s) is larger than number " "of elements in row (%s)" % (len(value), nobjects)) try: nparr[:] = value except Exception as exc: # XXX raise ValueError("Value parameter:\n'%r'\n" "cannot be converted into an array object " "compliant vlarray[%s] row: \n'%r'\n" "The error was: <%s>" % (value, nrow, nparr[:], exc)) if nparr.size > 0: self._modify(nrow, nparr, nobjects) def __setitem__(self, key, value): """Set a row, or set of rows, in the array. It takes different actions depending on the type of the *key* parameter: if it is an integer, the corresponding table row is set to *value* (a record or sequence capable of being converted to the table structure). If *key* is a slice, the row slice determined by it is set to *value* (a record array or sequence of rows capable of being converted to the table structure). In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the set of rows determined by it is set to value. Furthermore, if key is an array of boolean values, only the coordinates where key is True are set to values from value. Note that for the latter to work it is necessary that key list would contain exactly as many rows as the table has. .. note:: When updating the rows of a VLArray object which uses a pseudo-atom, there is a problem: you can only update values with *exactly* the same size in bytes than the original row. This is very difficult to meet with object pseudo-atoms, because :mod:`pickle` applied on a Python object does not guarantee to return the same number of bytes than over another object, even if they are of the same class. This effectively limits the kinds of objects than can be updated in variable-length arrays. Examples -------- :: vlarray[0] = vlarray[0] * 2 + 3 vlarray[99] = arange(96) * 2 + 3 # Negative values for the index are supported. vlarray[-99] = vlarray[5] * 2 + 3 vlarray[1:30:2] = list_of_rows vlarray[[1,3]] = new_1_and_3_rows """ self._g_check_open() self._v_file._check_writable() if is_idx(key): # If key is not a sequence, convert to it coords = [key] value = [value] elif isinstance(key, slice): start, stop, step = self._process_range( key.start, key.stop, key.step) coords = range(start, stop, step) # Try with a boolean or point selection elif type(key) in (list, tuple) or isinstance(key, np.ndarray): coords = self._point_selection(key) else: raise IndexError(f"Invalid index or slice: {key!r}") # Do the assignment row by row self._assign_values(coords, value) # Accessor for the _read_array method in superclass def read(self, start=None, stop=None, step=1): """Get data in the array as a list of objects of the current flavor. Please note that, as the lengths of the different rows are variable, the returned value is a *Python list* (not an array of the current flavor), with as many entries as specified rows in the range parameters. The start, stop and step parameters can be used to select only a *range of rows* in the array. Their meanings are the same as in the built-in range() Python function, except that negative values of step are not allowed yet. Moreover, if only start is specified, then stop will be set to start + 1. If you do not specify neither start nor stop, then *all the rows* in the array are selected. """ self._g_check_open() start, stop, step = self._process_range_read(start, stop, step) if start == stop: listarr = [] else: listarr = self._read_array(start, stop, step) atom = self.atom if not hasattr(atom, 'size'): # it is a pseudo-atom outlistarr = [atom.fromarray(arr) for arr in listarr] else: # Convert the list to the right flavor flavor = self.flavor outlistarr = [internal_to_flavor(arr, flavor) for arr in listarr] return outlistarr def _read_coordinates(self, coords): """Read rows specified in `coords`.""" rows = [] for coord in coords: rows.append(self.read(idx2long(coord), idx2long(coord) + 1, 1)[0]) return rows def _g_copy_with_stats(self, group, name, start, stop, step, title, filters, chunkshape, _log, **kwargs): """Private part of Leaf.copy() for each kind of leaf.""" # Build the new VLArray object object = VLArray( group, name, self.atom, title=title, filters=filters, expectedrows=self._v_expectedrows, chunkshape=chunkshape, _log=_log) # Now, fill the new vlarray with values from the old one # This is not buffered because we cannot forsee the length # of each record. So, the safest would be a copy row by row. # In the future, some analysis can be done in order to buffer # the copy process. nrowsinbuf = 1 (start, stop, step) = self._process_range_read(start, stop, step) # Optimized version (no conversions, no type and shape checks, etc...) nrowscopied = SizeType(0) nbytes = 0 if not hasattr(self.atom, 'size'): # it is a pseudo-atom atomsize = self.atom.base.size else: atomsize = self.atom.size for start2 in range(start, stop, step * nrowsinbuf): # Save the records on disk stop2 = start2 + step * nrowsinbuf if stop2 > stop: stop2 = stop nparr = self._read_array(start=start2, stop=stop2, step=step)[0] nobjects = nparr.shape[0] object._append(nparr, nobjects) nbytes += nobjects * atomsize nrowscopied += 1 object.nrows = nrowscopied return (object, nbytes) def __repr__(self): """This provides more metainfo in addition to standard __str__""" return f"""{self} atom = {self.atom!r} byteorder = {self.byteorder!r} nrows = {self.nrows} flavor = {self.flavor!r}"""
(parentnode, name, atom=None, title='', filters=None, expectedrows=None, chunkshape=None, byteorder=None, _log=True, track_times=True)
729,164
tables.vlarray
__getitem__
Get a row or a range of rows from the array. If key argument is an integer, the corresponding array row is returned as an object of the current flavor. If key is a slice, the range of rows determined by it is returned as a list of objects of the current flavor. In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the set of rows determined by it is returned. Furthermore, if key is an array of boolean values, only the coordinates where key is True are returned. Note that for the latter to work it is necessary that key list would contain exactly as many rows as the array has. Examples -------- :: a_row = vlarray[4] a_list = vlarray[4:1000:2] a_list2 = vlarray[[0,2]] # get list of coords a_list3 = vlarray[[0,-2]] # negative values accepted a_list4 = vlarray[np.array([True,...,False])] # array of bools
def __getitem__(self, key): """Get a row or a range of rows from the array. If key argument is an integer, the corresponding array row is returned as an object of the current flavor. If key is a slice, the range of rows determined by it is returned as a list of objects of the current flavor. In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the set of rows determined by it is returned. Furthermore, if key is an array of boolean values, only the coordinates where key is True are returned. Note that for the latter to work it is necessary that key list would contain exactly as many rows as the array has. Examples -------- :: a_row = vlarray[4] a_list = vlarray[4:1000:2] a_list2 = vlarray[[0,2]] # get list of coords a_list3 = vlarray[[0,-2]] # negative values accepted a_list4 = vlarray[np.array([True,...,False])] # array of bools """ self._g_check_open() if is_idx(key): key = operator.index(key) # Index out of range protection if key >= self.nrows: raise IndexError("Index out of range") if key < 0: # To support negative values key += self.nrows (start, stop, step) = self._process_range(key, key + 1, 1) return self.read(start, stop, step)[0] elif isinstance(key, slice): start, stop, step = self._process_range( key.start, key.stop, key.step) return self.read(start, stop, step) # Try with a boolean or point selection elif type(key) in (list, tuple) or isinstance(key, np.ndarray): coords = self._point_selection(key) return self._read_coordinates(coords) else: raise IndexError(f"Invalid index or slice: {key!r}")
(self, key)
729,165
tables.vlarray
__init__
null
def __init__(self, parentnode, name, atom=None, title="", filters=None, expectedrows=None, chunkshape=None, byteorder=None, _log=True, track_times=True): self._v_version = None """The object version of this array.""" self._v_new = new = atom is not None """Is this the first time the node has been created?""" self._v_new_title = title """New title for this node.""" self._v_new_filters = filters """New filter properties for this array.""" if expectedrows is None: expectedrows = parentnode._v_file.params['EXPECTED_ROWS_VLARRAY'] self._v_expectedrows = expectedrows """The expected number of rows to be stored in the array. .. versionadded:: 3.0 """ self._v_chunkshape = None """Private storage for the `chunkshape` property of Leaf.""" # Miscellaneous iteration rubbish. self._start = None """Starting row for the current iteration.""" self._stop = None """Stopping row for the current iteration.""" self._step = None """Step size for the current iteration.""" self._nrowsread = None """Number of rows read up to the current state of iteration.""" self._startb = None """Starting row for current buffer.""" self._stopb = None """Stopping row for current buffer. """ self._row = None """Current row in iterators (sentinel).""" self._init = False """Whether we are in the middle of an iteration or not (sentinel).""" self.listarr = None """Current buffer in iterators.""" # Documented (*public*) attributes. self.atom = atom """ An Atom (see :ref:`AtomClassDescr`) instance representing the *type* and *shape* of the atomic objects to be saved. You may use a *pseudo-atom* for storing a serialized object or variable length string per row. """ self.nrow = None """On iterators, this is the index of the current row.""" self.nrows = None """The current number of rows in the array.""" self.extdim = 0 # VLArray only have one dimension currently """The index of the enlargeable dimension (always 0 for vlarrays).""" # Check the chunkshape parameter if new and chunkshape is not None: if isinstance(chunkshape, (int, np.integer)): chunkshape = (chunkshape,) try: chunkshape = tuple(chunkshape) except TypeError: raise TypeError( "`chunkshape` parameter must be an integer or sequence " "and you passed a %s" % type(chunkshape)) if len(chunkshape) != 1: raise ValueError("`chunkshape` rank (length) must be 1: %r" % (chunkshape,)) self._v_chunkshape = tuple(SizeType(s) for s in chunkshape) super().__init__(parentnode, name, new, filters, byteorder, _log, track_times)
(self, parentnode, name, atom=None, title='', filters=None, expectedrows=None, chunkshape=None, byteorder=None, _log=True, track_times=True)
729,166
tables.vlarray
__iter__
Iterate over the rows of the array. This is equivalent to calling :meth:`VLArray.iterrows` with default arguments, i.e. it iterates over *all the rows* in the array. Examples -------- :: result = [row for row in vlarray] Which is equivalent to:: result = [row for row in vlarray.iterrows()]
def __iter__(self): """Iterate over the rows of the array. This is equivalent to calling :meth:`VLArray.iterrows` with default arguments, i.e. it iterates over *all the rows* in the array. Examples -------- :: result = [row for row in vlarray] Which is equivalent to:: result = [row for row in vlarray.iterrows()] """ if not self._init: # If the iterator is called directly, assign default variables self._start = 0 self._stop = self.nrows self._step = 1 # and initialize the loop self._init_loop() return self
(self)
729,168
tables.vlarray
__next__
Get the next element of the array during an iteration. The element is returned as a list of objects of the current flavor.
def __next__(self): """Get the next element of the array during an iteration. The element is returned as a list of objects of the current flavor. """ if self._nrowsread >= self._stop: self._init = False raise StopIteration # end of iteration else: # Read a chunk of rows if self._row + 1 >= self.nrowsinbuf or self._row < 0: self._stopb = self._startb + self._step * self.nrowsinbuf self.listarr = self.read(self._startb, self._stopb, self._step) self._row = -1 self._startb = self._stopb self._row += 1 self.nrow += self._step self._nrowsread += self._step return self.listarr[self._row]
(self)
729,169
tables.vlarray
__repr__
This provides more metainfo in addition to standard __str__
"""Here is defined the VLArray class.""" import operator import sys import numpy as np from . import hdf5extension from .atom import ObjectAtom, VLStringAtom, VLUnicodeAtom from .flavor import internal_to_flavor from .leaf import Leaf, calc_chunksize from .utils import ( convert_to_np_atom, convert_to_np_atom2, idx2long, correct_byteorder, SizeType, is_idx, lazyattr) # default version for VLARRAY objects # obversion = "1.0" # initial version # obversion = "1.0" # add support for complex datatypes # obversion = "1.1" # This adds support for time datatypes. # obversion = "1.2" # This adds support for enumerated datatypes. # obversion = "1.3" # Introduced 'PSEUDOATOM' attribute. obversion = "1.4" # Numeric and numarray flavors are gone. class VLArray(hdf5extension.VLArray, Leaf): """This class represents variable length (ragged) arrays in an HDF5 file. Instances of this class represent array objects in the object tree with the property that their rows can have a *variable* number of homogeneous elements, called *atoms*. Like Table datasets (see :ref:`TableClassDescr`), variable length arrays can have only one dimension, and the elements (atoms) of their rows can be fully multidimensional. When reading a range of rows from a VLArray, you will *always* get a Python list of objects of the current flavor (each of them for a row), which may have different lengths. This class provides methods to write or read data to or from variable length array objects in the file. Note that it also inherits all the public attributes and methods that Leaf (see :ref:`LeafClassDescr`) already provides. .. note:: VLArray objects also support compression although compression is only performed on the data structures used internally by the HDF5 to take references of the location of the variable length data. Data itself (the raw data) are not compressed or filtered. Please refer to the `VLTypes Technical Note <https://support.hdfgroup.org/HDF5/doc/TechNotes/VLTypes.html>`_ for more details on the topic. Parameters ---------- parentnode The parent :class:`Group` object. name : str The name of this node in its parent group. atom An `Atom` instance representing the *type* and *shape* of the atomic objects to be saved. title A description for this node (it sets the ``TITLE`` HDF5 attribute on disk). filters An instance of the `Filters` class that provides information about the desired I/O filters to be applied during the life of this object. expectedrows A user estimate about the number of row elements that will be added to the growable dimension in the `VLArray` node. If not provided, the default value is ``EXPECTED_ROWS_VLARRAY`` (see ``tables/parameters.py``). If you plan to create either a much smaller or a much bigger `VLArray` try providing a guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of memory used. .. versionadded:: 3.0 chunkshape The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters are applied to those chunks of data. The dimensionality of `chunkshape` must be 1. If ``None``, a sensible value is calculated (which is recommended). byteorder The byteorder of the data *on disk*, specified as 'little' or 'big'. If this is not specified, the byteorder is that of the platform. track_times Whether time data associated with the leaf are recorded (object access time, raw data modification time, metadata change time, object birth time); default True. Semantics of these times depend on their implementation in the HDF5 library: refer to documentation of the H5O_info_t data structure. As of HDF5 1.8.15, only ctime (metadata change time) is implemented. .. versionadded:: 3.4.3 .. versionchanged:: 3.0 *parentNode* renamed into *parentnode*. .. versionchanged:: 3.0 The *expectedsizeinMB* parameter has been replaced by *expectedrows*. Examples -------- See below a small example of the use of the VLArray class. The code is available in :file:`examples/vlarray1.py`:: import numpy as np import tables as tb # Create a VLArray: fileh = tb.open_file('vlarray1.h5', mode='w') vlarray = fileh.create_vlarray( fileh.root, 'vlarray1', tb.Int32Atom(shape=()), "ragged array of ints", filters=tb.Filters(1)) # Append some (variable length) rows: vlarray.append(np.array([5, 6])) vlarray.append(np.array([5, 6, 7])) vlarray.append([5, 6, 9, 8]) # Now, read it through an iterator: print('-->', vlarray.title) for x in vlarray: print('%s[%d]--> %s' % (vlarray.name, vlarray.nrow, x)) # Now, do the same with native Python strings. vlarray2 = fileh.create_vlarray( fileh.root, 'vlarray2', tb.StringAtom(itemsize=2), "ragged array of strings", filters=tb.Filters(1)) vlarray2.flavor = 'python' # Append some (variable length) rows: print('-->', vlarray2.title) vlarray2.append(['5', '66']) vlarray2.append(['5', '6', '77']) vlarray2.append(['5', '6', '9', '88']) # Now, read it through an iterator: for x in vlarray2: print('%s[%d]--> %s' % (vlarray2.name, vlarray2.nrow, x)) # Close the file. fileh.close() The output for the previous script is something like:: --> ragged array of ints vlarray1[0]--> [5 6] vlarray1[1]--> [5 6 7] vlarray1[2]--> [5 6 9 8] --> ragged array of strings vlarray2[0]--> ['5', '66'] vlarray2[1]--> ['5', '6', '77'] vlarray2[2]--> ['5', '6', '9', '88'] .. rubric:: VLArray attributes The instance variables below are provided in addition to those in Leaf (see :ref:`LeafClassDescr`). .. attribute:: atom An Atom (see :ref:`AtomClassDescr`) instance representing the *type* and *shape* of the atomic objects to be saved. You may use a *pseudo-atom* for storing a serialized object or variable length string per row. .. attribute:: flavor The type of data object read from this leaf. Please note that when reading several rows of VLArray data, the flavor only applies to the *components* of the returned Python list, not to the list itself. .. attribute:: nrow On iterators, this is the index of the current row. .. attribute:: nrows The current number of rows in the array. .. attribute:: extdim The index of the enlargeable dimension (always 0 for vlarrays). """ # Class identifier. _c_classid = 'VLARRAY' @lazyattr def dtype(self): """The NumPy ``dtype`` that most closely matches this array.""" return self.atom.dtype @property def shape(self): """The shape of the stored array.""" return (self.nrows,) @property def size_on_disk(self): """ The HDF5 library does not include a function to determine size_on_disk for variable-length arrays. Accessing this attribute will raise a NotImplementedError. """ raise NotImplementedError('size_on_disk not implemented for VLArrays') @property def size_in_memory(self): """ The size of this array's data in bytes when it is fully loaded into memory. .. note:: When data is stored in a VLArray using the ObjectAtom type, it is first serialized using pickle, and then converted to a NumPy array suitable for storage in an HDF5 file. This attribute will return the size of that NumPy representation. If you wish to know the size of the Python objects after they are loaded from disk, you can use this `ActiveState recipe <http://code.activestate.com/recipes/577504/>`_. """ return self._get_memory_size() def __init__(self, parentnode, name, atom=None, title="", filters=None, expectedrows=None, chunkshape=None, byteorder=None, _log=True, track_times=True): self._v_version = None """The object version of this array.""" self._v_new = new = atom is not None """Is this the first time the node has been created?""" self._v_new_title = title """New title for this node.""" self._v_new_filters = filters """New filter properties for this array.""" if expectedrows is None: expectedrows = parentnode._v_file.params['EXPECTED_ROWS_VLARRAY'] self._v_expectedrows = expectedrows """The expected number of rows to be stored in the array. .. versionadded:: 3.0 """ self._v_chunkshape = None """Private storage for the `chunkshape` property of Leaf.""" # Miscellaneous iteration rubbish. self._start = None """Starting row for the current iteration.""" self._stop = None """Stopping row for the current iteration.""" self._step = None """Step size for the current iteration.""" self._nrowsread = None """Number of rows read up to the current state of iteration.""" self._startb = None """Starting row for current buffer.""" self._stopb = None """Stopping row for current buffer. """ self._row = None """Current row in iterators (sentinel).""" self._init = False """Whether we are in the middle of an iteration or not (sentinel).""" self.listarr = None """Current buffer in iterators.""" # Documented (*public*) attributes. self.atom = atom """ An Atom (see :ref:`AtomClassDescr`) instance representing the *type* and *shape* of the atomic objects to be saved. You may use a *pseudo-atom* for storing a serialized object or variable length string per row. """ self.nrow = None """On iterators, this is the index of the current row.""" self.nrows = None """The current number of rows in the array.""" self.extdim = 0 # VLArray only have one dimension currently """The index of the enlargeable dimension (always 0 for vlarrays).""" # Check the chunkshape parameter if new and chunkshape is not None: if isinstance(chunkshape, (int, np.integer)): chunkshape = (chunkshape,) try: chunkshape = tuple(chunkshape) except TypeError: raise TypeError( "`chunkshape` parameter must be an integer or sequence " "and you passed a %s" % type(chunkshape)) if len(chunkshape) != 1: raise ValueError("`chunkshape` rank (length) must be 1: %r" % (chunkshape,)) self._v_chunkshape = tuple(SizeType(s) for s in chunkshape) super().__init__(parentnode, name, new, filters, byteorder, _log, track_times) def _g_post_init_hook(self): super()._g_post_init_hook() self.nrowsinbuf = 100 # maybe enough for most applications # This is too specific for moving it into Leaf def _calc_chunkshape(self, expectedrows): """Calculate the size for the HDF5 chunk.""" # For computing the chunkshape for HDF5 VL types, we have to # choose the itemsize of the *each* element of the atom and # not the size of the entire atom. I don't know why this # should be like this, perhaps I should report this to the # HDF5 list. # F. Alted 2006-11-23 # elemsize = self.atom.atomsize() elemsize = self._basesize # AV 2013-05-03 # This is just a quick workaround tha allows to change the API for # PyTables 3.0 release and remove the expected_mb parameter. # The algorithm for computing the chunkshape should be rewritten as # requested by gh-35. expected_mb = expectedrows * elemsize / 1024 ** 2 chunksize = calc_chunksize(expected_mb) # Set the chunkshape chunkshape = chunksize // elemsize # Safeguard against itemsizes being extremely large if chunkshape == 0: chunkshape = 1 return (SizeType(chunkshape),) def _g_create(self): """Create a variable length array (ragged array).""" atom = self.atom self._v_version = obversion # Check for zero dims in atom shape (not allowed in VLArrays) zerodims = np.sum(np.array(atom.shape) == 0) if zerodims > 0: raise ValueError("When creating VLArrays, none of the dimensions " "of the Atom instance can be zero.") if not hasattr(atom, 'size'): # it is a pseudo-atom self._atomicdtype = atom.base.dtype self._atomicsize = atom.base.size self._basesize = atom.base.itemsize else: self._atomicdtype = atom.dtype self._atomicsize = atom.size self._basesize = atom.itemsize self._atomictype = atom.type self._atomicshape = atom.shape # Compute the optimal chunkshape, if needed if self._v_chunkshape is None: self._v_chunkshape = self._calc_chunkshape(self._v_expectedrows) self.nrows = SizeType(0) # No rows at creation time # Correct the byteorder if needed if self.byteorder is None: self.byteorder = correct_byteorder(atom.type, sys.byteorder) # After creating the vlarray, ``self._v_objectid`` needs to be # set because it is needed for setting attributes afterwards. self._v_objectid = self._create_array(self._v_new_title) # Add an attribute in case we have a pseudo-atom so that we # can retrieve the proper class after a re-opening operation. if not hasattr(atom, 'size'): # it is a pseudo-atom self.attrs.PSEUDOATOM = atom.kind return self._v_objectid def _g_open(self): """Get the metadata info for an array in file.""" self._v_objectid, self.nrows, self._v_chunkshape, atom = \ self._open_array() # Check if the atom can be a PseudoAtom if "PSEUDOATOM" in self.attrs: kind = self.attrs.PSEUDOATOM if kind == 'vlstring': atom = VLStringAtom() elif kind == 'vlunicode': atom = VLUnicodeAtom() elif kind == 'object': atom = ObjectAtom() else: raise ValueError( "pseudo-atom name ``%s`` not known." % kind) elif self._v_file.format_version[:1] == "1": flavor1x = self.attrs.FLAVOR if flavor1x == "VLString": atom = VLStringAtom() elif flavor1x == "Object": atom = ObjectAtom() self.atom = atom return self._v_objectid def _getnobjects(self, nparr): """Return the number of objects in a NumPy array.""" # Check for zero dimensionality array zerodims = np.sum(np.array(nparr.shape) == 0) if zerodims > 0: # No objects to be added return 0 shape = nparr.shape atom_shape = self.atom.shape shapelen = len(nparr.shape) if isinstance(atom_shape, tuple): atomshapelen = len(self.atom.shape) else: atom_shape = (self.atom.shape,) atomshapelen = 1 diflen = shapelen - atomshapelen if shape == atom_shape: nobjects = 1 elif (diflen == 1 and shape[diflen:] == atom_shape): # Check if the leading dimensions are all ones # if shape[:diflen-1] == (1,)*(diflen-1): # nobjects = shape[diflen-1] # shape = shape[diflen:] # It's better to accept only inputs with the exact dimensionality # i.e. a dimensionality only 1 element larger than atom nobjects = shape[0] shape = shape[1:] elif atom_shape == (1,) and shapelen == 1: # Case where shape = (N,) and shape_atom = 1 or (1,) nobjects = shape[0] else: raise ValueError("The object '%s' is composed of elements with " "shape '%s', which is not compatible with the " "atom shape ('%s')." % (nparr, shape, atom_shape)) return nobjects def get_enum(self): """Get the enumerated type associated with this array. If this array is of an enumerated type, the corresponding Enum instance (see :ref:`EnumClassDescr`) is returned. If it is not of an enumerated type, a TypeError is raised. """ if self.atom.kind != 'enum': raise TypeError("array ``%s`` is not of an enumerated type" % self._v_pathname) return self.atom.enum def append(self, sequence): """Add a sequence of data to the end of the dataset. This method appends the objects in the sequence to a *single row* in this array. The type and shape of individual objects must be compliant with the atoms in the array. In the case of serialized objects and variable length strings, the object or string to append is itself the sequence. """ self._g_check_open() self._v_file._check_writable() # Prepare the sequence to convert it into a NumPy object atom = self.atom if not hasattr(atom, 'size'): # it is a pseudo-atom sequence = atom.toarray(sequence) statom = atom.base else: try: # fastest check in most cases len(sequence) except TypeError: raise TypeError("argument is not a sequence") statom = atom if len(sequence) > 0: # The sequence needs to be copied to make the operation safe # to in-place conversion. nparr = convert_to_np_atom2(sequence, statom) nobjects = self._getnobjects(nparr) else: nobjects = 0 nparr = None self._append(nparr, nobjects) self.nrows += 1 def iterrows(self, start=None, stop=None, step=None): """Iterate over the rows of the array. This method returns an iterator yielding an object of the current flavor for each selected row in the array. If a range is not supplied, *all the rows* in the array are iterated upon. You can also use the :meth:`VLArray.__iter__` special method for that purpose. If you only want to iterate over a given *range of rows* in the array, you may use the start, stop and step parameters. Examples -------- :: for row in vlarray.iterrows(step=4): print('%s[%d]--> %s' % (vlarray.name, vlarray.nrow, row)) .. versionchanged:: 3.0 If the *start* parameter is provided and *stop* is None then the array is iterated from *start* to the last line. In PyTables < 3.0 only one element was returned. """ (self._start, self._stop, self._step) = self._process_range( start, stop, step) self._init_loop() return self def __iter__(self): """Iterate over the rows of the array. This is equivalent to calling :meth:`VLArray.iterrows` with default arguments, i.e. it iterates over *all the rows* in the array. Examples -------- :: result = [row for row in vlarray] Which is equivalent to:: result = [row for row in vlarray.iterrows()] """ if not self._init: # If the iterator is called directly, assign default variables self._start = 0 self._stop = self.nrows self._step = 1 # and initialize the loop self._init_loop() return self def _init_loop(self): """Initialization for the __iter__ iterator.""" self._nrowsread = self._start self._startb = self._start self._row = -1 # Sentinel self._init = True # Sentinel self.nrow = SizeType(self._start - self._step) # row number def __next__(self): """Get the next element of the array during an iteration. The element is returned as a list of objects of the current flavor. """ if self._nrowsread >= self._stop: self._init = False raise StopIteration # end of iteration else: # Read a chunk of rows if self._row + 1 >= self.nrowsinbuf or self._row < 0: self._stopb = self._startb + self._step * self.nrowsinbuf self.listarr = self.read(self._startb, self._stopb, self._step) self._row = -1 self._startb = self._stopb self._row += 1 self.nrow += self._step self._nrowsread += self._step return self.listarr[self._row] def __getitem__(self, key): """Get a row or a range of rows from the array. If key argument is an integer, the corresponding array row is returned as an object of the current flavor. If key is a slice, the range of rows determined by it is returned as a list of objects of the current flavor. In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the set of rows determined by it is returned. Furthermore, if key is an array of boolean values, only the coordinates where key is True are returned. Note that for the latter to work it is necessary that key list would contain exactly as many rows as the array has. Examples -------- :: a_row = vlarray[4] a_list = vlarray[4:1000:2] a_list2 = vlarray[[0,2]] # get list of coords a_list3 = vlarray[[0,-2]] # negative values accepted a_list4 = vlarray[np.array([True,...,False])] # array of bools """ self._g_check_open() if is_idx(key): key = operator.index(key) # Index out of range protection if key >= self.nrows: raise IndexError("Index out of range") if key < 0: # To support negative values key += self.nrows (start, stop, step) = self._process_range(key, key + 1, 1) return self.read(start, stop, step)[0] elif isinstance(key, slice): start, stop, step = self._process_range( key.start, key.stop, key.step) return self.read(start, stop, step) # Try with a boolean or point selection elif type(key) in (list, tuple) or isinstance(key, np.ndarray): coords = self._point_selection(key) return self._read_coordinates(coords) else: raise IndexError(f"Invalid index or slice: {key!r}") def _assign_values(self, coords, values): """Assign the `values` to the positions stated in `coords`.""" for nrow, value in zip(coords, values): if nrow >= self.nrows: raise IndexError("First index out of range") if nrow < 0: # To support negative values nrow += self.nrows object_ = value # Prepare the object to convert it into a NumPy object atom = self.atom if not hasattr(atom, 'size'): # it is a pseudo-atom object_ = atom.toarray(object_) statom = atom.base else: statom = atom value = convert_to_np_atom(object_, statom) nobjects = self._getnobjects(value) # Get the previous value nrow = idx2long( nrow) # To convert any possible numpy scalar value nparr = self._read_array(nrow, nrow + 1, 1)[0] nobjects = len(nparr) if len(value) > nobjects: raise ValueError("Length of value (%s) is larger than number " "of elements in row (%s)" % (len(value), nobjects)) try: nparr[:] = value except Exception as exc: # XXX raise ValueError("Value parameter:\n'%r'\n" "cannot be converted into an array object " "compliant vlarray[%s] row: \n'%r'\n" "The error was: <%s>" % (value, nrow, nparr[:], exc)) if nparr.size > 0: self._modify(nrow, nparr, nobjects) def __setitem__(self, key, value): """Set a row, or set of rows, in the array. It takes different actions depending on the type of the *key* parameter: if it is an integer, the corresponding table row is set to *value* (a record or sequence capable of being converted to the table structure). If *key* is a slice, the row slice determined by it is set to *value* (a record array or sequence of rows capable of being converted to the table structure). In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the set of rows determined by it is set to value. Furthermore, if key is an array of boolean values, only the coordinates where key is True are set to values from value. Note that for the latter to work it is necessary that key list would contain exactly as many rows as the table has. .. note:: When updating the rows of a VLArray object which uses a pseudo-atom, there is a problem: you can only update values with *exactly* the same size in bytes than the original row. This is very difficult to meet with object pseudo-atoms, because :mod:`pickle` applied on a Python object does not guarantee to return the same number of bytes than over another object, even if they are of the same class. This effectively limits the kinds of objects than can be updated in variable-length arrays. Examples -------- :: vlarray[0] = vlarray[0] * 2 + 3 vlarray[99] = arange(96) * 2 + 3 # Negative values for the index are supported. vlarray[-99] = vlarray[5] * 2 + 3 vlarray[1:30:2] = list_of_rows vlarray[[1,3]] = new_1_and_3_rows """ self._g_check_open() self._v_file._check_writable() if is_idx(key): # If key is not a sequence, convert to it coords = [key] value = [value] elif isinstance(key, slice): start, stop, step = self._process_range( key.start, key.stop, key.step) coords = range(start, stop, step) # Try with a boolean or point selection elif type(key) in (list, tuple) or isinstance(key, np.ndarray): coords = self._point_selection(key) else: raise IndexError(f"Invalid index or slice: {key!r}") # Do the assignment row by row self._assign_values(coords, value) # Accessor for the _read_array method in superclass def read(self, start=None, stop=None, step=1): """Get data in the array as a list of objects of the current flavor. Please note that, as the lengths of the different rows are variable, the returned value is a *Python list* (not an array of the current flavor), with as many entries as specified rows in the range parameters. The start, stop and step parameters can be used to select only a *range of rows* in the array. Their meanings are the same as in the built-in range() Python function, except that negative values of step are not allowed yet. Moreover, if only start is specified, then stop will be set to start + 1. If you do not specify neither start nor stop, then *all the rows* in the array are selected. """ self._g_check_open() start, stop, step = self._process_range_read(start, stop, step) if start == stop: listarr = [] else: listarr = self._read_array(start, stop, step) atom = self.atom if not hasattr(atom, 'size'): # it is a pseudo-atom outlistarr = [atom.fromarray(arr) for arr in listarr] else: # Convert the list to the right flavor flavor = self.flavor outlistarr = [internal_to_flavor(arr, flavor) for arr in listarr] return outlistarr def _read_coordinates(self, coords): """Read rows specified in `coords`.""" rows = [] for coord in coords: rows.append(self.read(idx2long(coord), idx2long(coord) + 1, 1)[0]) return rows def _g_copy_with_stats(self, group, name, start, stop, step, title, filters, chunkshape, _log, **kwargs): """Private part of Leaf.copy() for each kind of leaf.""" # Build the new VLArray object object = VLArray( group, name, self.atom, title=title, filters=filters, expectedrows=self._v_expectedrows, chunkshape=chunkshape, _log=_log) # Now, fill the new vlarray with values from the old one # This is not buffered because we cannot forsee the length # of each record. So, the safest would be a copy row by row. # In the future, some analysis can be done in order to buffer # the copy process. nrowsinbuf = 1 (start, stop, step) = self._process_range_read(start, stop, step) # Optimized version (no conversions, no type and shape checks, etc...) nrowscopied = SizeType(0) nbytes = 0 if not hasattr(self.atom, 'size'): # it is a pseudo-atom atomsize = self.atom.base.size else: atomsize = self.atom.size for start2 in range(start, stop, step * nrowsinbuf): # Save the records on disk stop2 = start2 + step * nrowsinbuf if stop2 > stop: stop2 = stop nparr = self._read_array(start=start2, stop=stop2, step=step)[0] nobjects = nparr.shape[0] object._append(nparr, nobjects) nbytes += nobjects * atomsize nrowscopied += 1 object.nrows = nrowscopied return (object, nbytes) def __repr__(self): """This provides more metainfo in addition to standard __str__""" return f"""{self} atom = {self.atom!r} byteorder = {self.byteorder!r} nrows = {self.nrows} flavor = {self.flavor!r}"""
(self)
729,170
tables.vlarray
__setitem__
Set a row, or set of rows, in the array. It takes different actions depending on the type of the *key* parameter: if it is an integer, the corresponding table row is set to *value* (a record or sequence capable of being converted to the table structure). If *key* is a slice, the row slice determined by it is set to *value* (a record array or sequence of rows capable of being converted to the table structure). In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the set of rows determined by it is set to value. Furthermore, if key is an array of boolean values, only the coordinates where key is True are set to values from value. Note that for the latter to work it is necessary that key list would contain exactly as many rows as the table has. .. note:: When updating the rows of a VLArray object which uses a pseudo-atom, there is a problem: you can only update values with *exactly* the same size in bytes than the original row. This is very difficult to meet with object pseudo-atoms, because :mod:`pickle` applied on a Python object does not guarantee to return the same number of bytes than over another object, even if they are of the same class. This effectively limits the kinds of objects than can be updated in variable-length arrays. Examples -------- :: vlarray[0] = vlarray[0] * 2 + 3 vlarray[99] = arange(96) * 2 + 3 # Negative values for the index are supported. vlarray[-99] = vlarray[5] * 2 + 3 vlarray[1:30:2] = list_of_rows vlarray[[1,3]] = new_1_and_3_rows
def __setitem__(self, key, value): """Set a row, or set of rows, in the array. It takes different actions depending on the type of the *key* parameter: if it is an integer, the corresponding table row is set to *value* (a record or sequence capable of being converted to the table structure). If *key* is a slice, the row slice determined by it is set to *value* (a record array or sequence of rows capable of being converted to the table structure). In addition, NumPy-style point selections are supported. In particular, if key is a list of row coordinates, the set of rows determined by it is set to value. Furthermore, if key is an array of boolean values, only the coordinates where key is True are set to values from value. Note that for the latter to work it is necessary that key list would contain exactly as many rows as the table has. .. note:: When updating the rows of a VLArray object which uses a pseudo-atom, there is a problem: you can only update values with *exactly* the same size in bytes than the original row. This is very difficult to meet with object pseudo-atoms, because :mod:`pickle` applied on a Python object does not guarantee to return the same number of bytes than over another object, even if they are of the same class. This effectively limits the kinds of objects than can be updated in variable-length arrays. Examples -------- :: vlarray[0] = vlarray[0] * 2 + 3 vlarray[99] = arange(96) * 2 + 3 # Negative values for the index are supported. vlarray[-99] = vlarray[5] * 2 + 3 vlarray[1:30:2] = list_of_rows vlarray[[1,3]] = new_1_and_3_rows """ self._g_check_open() self._v_file._check_writable() if is_idx(key): # If key is not a sequence, convert to it coords = [key] value = [value] elif isinstance(key, slice): start, stop, step = self._process_range( key.start, key.stop, key.step) coords = range(start, stop, step) # Try with a boolean or point selection elif type(key) in (list, tuple) or isinstance(key, np.ndarray): coords = self._point_selection(key) else: raise IndexError(f"Invalid index or slice: {key!r}") # Do the assignment row by row self._assign_values(coords, value)
(self, key, value)
729,172
tables.vlarray
_assign_values
Assign the `values` to the positions stated in `coords`.
def _assign_values(self, coords, values): """Assign the `values` to the positions stated in `coords`.""" for nrow, value in zip(coords, values): if nrow >= self.nrows: raise IndexError("First index out of range") if nrow < 0: # To support negative values nrow += self.nrows object_ = value # Prepare the object to convert it into a NumPy object atom = self.atom if not hasattr(atom, 'size'): # it is a pseudo-atom object_ = atom.toarray(object_) statom = atom.base else: statom = atom value = convert_to_np_atom(object_, statom) nobjects = self._getnobjects(value) # Get the previous value nrow = idx2long( nrow) # To convert any possible numpy scalar value nparr = self._read_array(nrow, nrow + 1, 1)[0] nobjects = len(nparr) if len(value) > nobjects: raise ValueError("Length of value (%s) is larger than number " "of elements in row (%s)" % (len(value), nobjects)) try: nparr[:] = value except Exception as exc: # XXX raise ValueError("Value parameter:\n'%r'\n" "cannot be converted into an array object " "compliant vlarray[%s] row: \n'%r'\n" "The error was: <%s>" % (value, nrow, nparr[:], exc)) if nparr.size > 0: self._modify(nrow, nparr, nobjects)
(self, coords, values)
729,173
tables.vlarray
_calc_chunkshape
Calculate the size for the HDF5 chunk.
def _calc_chunkshape(self, expectedrows): """Calculate the size for the HDF5 chunk.""" # For computing the chunkshape for HDF5 VL types, we have to # choose the itemsize of the *each* element of the atom and # not the size of the entire atom. I don't know why this # should be like this, perhaps I should report this to the # HDF5 list. # F. Alted 2006-11-23 # elemsize = self.atom.atomsize() elemsize = self._basesize # AV 2013-05-03 # This is just a quick workaround tha allows to change the API for # PyTables 3.0 release and remove the expected_mb parameter. # The algorithm for computing the chunkshape should be rewritten as # requested by gh-35. expected_mb = expectedrows * elemsize / 1024 ** 2 chunksize = calc_chunksize(expected_mb) # Set the chunkshape chunkshape = chunksize // elemsize # Safeguard against itemsizes being extremely large if chunkshape == 0: chunkshape = 1 return (SizeType(chunkshape),)
(self, expectedrows)
729,190
tables.vlarray
_g_copy_with_stats
Private part of Leaf.copy() for each kind of leaf.
def _g_copy_with_stats(self, group, name, start, stop, step, title, filters, chunkshape, _log, **kwargs): """Private part of Leaf.copy() for each kind of leaf.""" # Build the new VLArray object object = VLArray( group, name, self.atom, title=title, filters=filters, expectedrows=self._v_expectedrows, chunkshape=chunkshape, _log=_log) # Now, fill the new vlarray with values from the old one # This is not buffered because we cannot forsee the length # of each record. So, the safest would be a copy row by row. # In the future, some analysis can be done in order to buffer # the copy process. nrowsinbuf = 1 (start, stop, step) = self._process_range_read(start, stop, step) # Optimized version (no conversions, no type and shape checks, etc...) nrowscopied = SizeType(0) nbytes = 0 if not hasattr(self.atom, 'size'): # it is a pseudo-atom atomsize = self.atom.base.size else: atomsize = self.atom.size for start2 in range(start, stop, step * nrowsinbuf): # Save the records on disk stop2 = start2 + step * nrowsinbuf if stop2 > stop: stop2 = stop nparr = self._read_array(start=start2, stop=stop2, step=step)[0] nobjects = nparr.shape[0] object._append(nparr, nobjects) nbytes += nobjects * atomsize nrowscopied += 1 object.nrows = nrowscopied return (object, nbytes)
(self, group, name, start, stop, step, title, filters, chunkshape, _log, **kwargs)
729,191
tables.vlarray
_g_create
Create a variable length array (ragged array).
def _g_create(self): """Create a variable length array (ragged array).""" atom = self.atom self._v_version = obversion # Check for zero dims in atom shape (not allowed in VLArrays) zerodims = np.sum(np.array(atom.shape) == 0) if zerodims > 0: raise ValueError("When creating VLArrays, none of the dimensions " "of the Atom instance can be zero.") if not hasattr(atom, 'size'): # it is a pseudo-atom self._atomicdtype = atom.base.dtype self._atomicsize = atom.base.size self._basesize = atom.base.itemsize else: self._atomicdtype = atom.dtype self._atomicsize = atom.size self._basesize = atom.itemsize self._atomictype = atom.type self._atomicshape = atom.shape # Compute the optimal chunkshape, if needed if self._v_chunkshape is None: self._v_chunkshape = self._calc_chunkshape(self._v_expectedrows) self.nrows = SizeType(0) # No rows at creation time # Correct the byteorder if needed if self.byteorder is None: self.byteorder = correct_byteorder(atom.type, sys.byteorder) # After creating the vlarray, ``self._v_objectid`` needs to be # set because it is needed for setting attributes afterwards. self._v_objectid = self._create_array(self._v_new_title) # Add an attribute in case we have a pseudo-atom so that we # can retrieve the proper class after a re-opening operation. if not hasattr(atom, 'size'): # it is a pseudo-atom self.attrs.PSEUDOATOM = atom.kind return self._v_objectid
(self)
729,200
tables.vlarray
_g_open
Get the metadata info for an array in file.
def _g_open(self): """Get the metadata info for an array in file.""" self._v_objectid, self.nrows, self._v_chunkshape, atom = \ self._open_array() # Check if the atom can be a PseudoAtom if "PSEUDOATOM" in self.attrs: kind = self.attrs.PSEUDOATOM if kind == 'vlstring': atom = VLStringAtom() elif kind == 'vlunicode': atom = VLUnicodeAtom() elif kind == 'object': atom = ObjectAtom() else: raise ValueError( "pseudo-atom name ``%s`` not known." % kind) elif self._v_file.format_version[:1] == "1": flavor1x = self.attrs.FLAVOR if flavor1x == "VLString": atom = VLStringAtom() elif flavor1x == "Object": atom = ObjectAtom() self.atom = atom return self._v_objectid
(self)
729,201
tables.vlarray
_g_post_init_hook
null
def _g_post_init_hook(self): super()._g_post_init_hook() self.nrowsinbuf = 100 # maybe enough for most applications
(self)
729,209
tables.vlarray
_getnobjects
Return the number of objects in a NumPy array.
def _getnobjects(self, nparr): """Return the number of objects in a NumPy array.""" # Check for zero dimensionality array zerodims = np.sum(np.array(nparr.shape) == 0) if zerodims > 0: # No objects to be added return 0 shape = nparr.shape atom_shape = self.atom.shape shapelen = len(nparr.shape) if isinstance(atom_shape, tuple): atomshapelen = len(self.atom.shape) else: atom_shape = (self.atom.shape,) atomshapelen = 1 diflen = shapelen - atomshapelen if shape == atom_shape: nobjects = 1 elif (diflen == 1 and shape[diflen:] == atom_shape): # Check if the leading dimensions are all ones # if shape[:diflen-1] == (1,)*(diflen-1): # nobjects = shape[diflen-1] # shape = shape[diflen:] # It's better to accept only inputs with the exact dimensionality # i.e. a dimensionality only 1 element larger than atom nobjects = shape[0] shape = shape[1:] elif atom_shape == (1,) and shapelen == 1: # Case where shape = (N,) and shape_atom = 1 or (1,) nobjects = shape[0] else: raise ValueError("The object '%s' is composed of elements with " "shape '%s', which is not compatible with the " "atom shape ('%s')." % (nparr, shape, atom_shape)) return nobjects
(self, nparr)
729,214
tables.vlarray
_read_coordinates
Read rows specified in `coords`.
def _read_coordinates(self, coords): """Read rows specified in `coords`.""" rows = [] for coord in coords: rows.append(self.read(idx2long(coord), idx2long(coord) + 1, 1)[0]) return rows
(self, coords)
729,215
tables.vlarray
append
Add a sequence of data to the end of the dataset. This method appends the objects in the sequence to a *single row* in this array. The type and shape of individual objects must be compliant with the atoms in the array. In the case of serialized objects and variable length strings, the object or string to append is itself the sequence.
def append(self, sequence): """Add a sequence of data to the end of the dataset. This method appends the objects in the sequence to a *single row* in this array. The type and shape of individual objects must be compliant with the atoms in the array. In the case of serialized objects and variable length strings, the object or string to append is itself the sequence. """ self._g_check_open() self._v_file._check_writable() # Prepare the sequence to convert it into a NumPy object atom = self.atom if not hasattr(atom, 'size'): # it is a pseudo-atom sequence = atom.toarray(sequence) statom = atom.base else: try: # fastest check in most cases len(sequence) except TypeError: raise TypeError("argument is not a sequence") statom = atom if len(sequence) > 0: # The sequence needs to be copied to make the operation safe # to in-place conversion. nparr = convert_to_np_atom2(sequence, statom) nobjects = self._getnobjects(nparr) else: nobjects = 0 nparr = None self._append(nparr, nobjects) self.nrows += 1
(self, sequence)
729,223
tables.vlarray
iterrows
Iterate over the rows of the array. This method returns an iterator yielding an object of the current flavor for each selected row in the array. If a range is not supplied, *all the rows* in the array are iterated upon. You can also use the :meth:`VLArray.__iter__` special method for that purpose. If you only want to iterate over a given *range of rows* in the array, you may use the start, stop and step parameters. Examples -------- :: for row in vlarray.iterrows(step=4): print('%s[%d]--> %s' % (vlarray.name, vlarray.nrow, row)) .. versionchanged:: 3.0 If the *start* parameter is provided and *stop* is None then the array is iterated from *start* to the last line. In PyTables < 3.0 only one element was returned.
def iterrows(self, start=None, stop=None, step=None): """Iterate over the rows of the array. This method returns an iterator yielding an object of the current flavor for each selected row in the array. If a range is not supplied, *all the rows* in the array are iterated upon. You can also use the :meth:`VLArray.__iter__` special method for that purpose. If you only want to iterate over a given *range of rows* in the array, you may use the start, stop and step parameters. Examples -------- :: for row in vlarray.iterrows(step=4): print('%s[%d]--> %s' % (vlarray.name, vlarray.nrow, row)) .. versionchanged:: 3.0 If the *start* parameter is provided and *stop* is None then the array is iterated from *start* to the last line. In PyTables < 3.0 only one element was returned. """ (self._start, self._stop, self._step) = self._process_range( start, stop, step) self._init_loop() return self
(self, start=None, stop=None, step=None)
729,225
tables.vlarray
read
Get data in the array as a list of objects of the current flavor. Please note that, as the lengths of the different rows are variable, the returned value is a *Python list* (not an array of the current flavor), with as many entries as specified rows in the range parameters. The start, stop and step parameters can be used to select only a *range of rows* in the array. Their meanings are the same as in the built-in range() Python function, except that negative values of step are not allowed yet. Moreover, if only start is specified, then stop will be set to start + 1. If you do not specify neither start nor stop, then *all the rows* in the array are selected.
def read(self, start=None, stop=None, step=1): """Get data in the array as a list of objects of the current flavor. Please note that, as the lengths of the different rows are variable, the returned value is a *Python list* (not an array of the current flavor), with as many entries as specified rows in the range parameters. The start, stop and step parameters can be used to select only a *range of rows* in the array. Their meanings are the same as in the built-in range() Python function, except that negative values of step are not allowed yet. Moreover, if only start is specified, then stop will be set to start + 1. If you do not specify neither start nor stop, then *all the rows* in the array are selected. """ self._g_check_open() start, stop, step = self._process_range_read(start, stop, step) if start == stop: listarr = [] else: listarr = self._read_array(start, stop, step) atom = self.atom if not hasattr(atom, 'size'): # it is a pseudo-atom outlistarr = [atom.fromarray(arr) for arr in listarr] else: # Convert the list to the right flavor flavor = self.flavor outlistarr = [internal_to_flavor(arr, flavor) for arr in listarr] return outlistarr
(self, start=None, stop=None, step=1)
729,230
tables.atom
VLStringAtom
Defines an atom of type ``vlstring``. This class describes a *row* of the VLArray class, rather than an atom. It differs from the StringAtom class in that you can only add *one instance of it to one specific row*, i.e. the :meth:`VLArray.append` method only accepts one object when the base atom is of this type. This class stores bytestrings. It does not make assumptions on the encoding of the string, and raw bytes are stored as is. To store a string you will need to *explicitly* convert it to a bytestring before you can save them:: >>> s = 'A unicode string: hbar = ℏ' >>> bytestring = s.encode('utf-8') >>> VLArray.append(bytestring) # doctest: +SKIP For full Unicode support, using VLUnicodeAtom (see :ref:`VLUnicodeAtom`) is recommended. Variable-length string atoms do not accept parameters and they cause the reads of rows to always return Python bytestrings. You can regard vlstring atoms as an easy way to save generic variable length strings.
class VLStringAtom(_BufferedAtom): """Defines an atom of type ``vlstring``. This class describes a *row* of the VLArray class, rather than an atom. It differs from the StringAtom class in that you can only add *one instance of it to one specific row*, i.e. the :meth:`VLArray.append` method only accepts one object when the base atom is of this type. This class stores bytestrings. It does not make assumptions on the encoding of the string, and raw bytes are stored as is. To store a string you will need to *explicitly* convert it to a bytestring before you can save them:: >>> s = 'A unicode string: hbar = \u210f' >>> bytestring = s.encode('utf-8') >>> VLArray.append(bytestring) # doctest: +SKIP For full Unicode support, using VLUnicodeAtom (see :ref:`VLUnicodeAtom`) is recommended. Variable-length string atoms do not accept parameters and they cause the reads of rows to always return Python bytestrings. You can regard vlstring atoms as an easy way to save generic variable length strings. """ kind = 'vlstring' type = 'vlstring' base = UInt8Atom() def _tobuffer(self, object_): if isinstance(object_, str): warnings.warn("Storing non bytestrings in VLStringAtom is " "deprecated.", DeprecationWarning) elif not isinstance(object_, bytes): raise TypeError(f"object is not a string: {object_!r}") return np.bytes_(object_) def fromarray(self, array): return array.tobytes()
()
729,232
tables.atom
_tobuffer
null
def _tobuffer(self, object_): if isinstance(object_, str): warnings.warn("Storing non bytestrings in VLStringAtom is " "deprecated.", DeprecationWarning) elif not isinstance(object_, bytes): raise TypeError(f"object is not a string: {object_!r}") return np.bytes_(object_)
(self, object_)
729,233
tables.atom
fromarray
null
def fromarray(self, array): return array.tobytes()
(self, array)
729,235
tables.atom
VLUnicodeAtom
Defines an atom of type vlunicode. This class describes a *row* of the VLArray class, rather than an atom. It is very similar to VLStringAtom (see :ref:`VLStringAtom`), but it stores Unicode strings (using 32-bit characters a la UCS-4, so all strings of the same length also take up the same space). This class does not make assumptions on the encoding of plain input strings. Plain strings are supported as long as no character is out of the ASCII set; otherwise, you will need to *explicitly* convert them to Unicode before you can save them. Variable-length Unicode atoms do not accept parameters and they cause the reads of rows to always return Python Unicode strings. You can regard vlunicode atoms as an easy way to save variable length Unicode strings.
class VLUnicodeAtom(_BufferedAtom): """Defines an atom of type vlunicode. This class describes a *row* of the VLArray class, rather than an atom. It is very similar to VLStringAtom (see :ref:`VLStringAtom`), but it stores Unicode strings (using 32-bit characters a la UCS-4, so all strings of the same length also take up the same space). This class does not make assumptions on the encoding of plain input strings. Plain strings are supported as long as no character is out of the ASCII set; otherwise, you will need to *explicitly* convert them to Unicode before you can save them. Variable-length Unicode atoms do not accept parameters and they cause the reads of rows to always return Python Unicode strings. You can regard vlunicode atoms as an easy way to save variable length Unicode strings. """ kind = 'vlunicode' type = 'vlunicode' base = UInt32Atom() # numpy.unicode_ no more implements the buffer interface in Python 3 # # When the Python build is UCS-2, we need to promote the # Unicode string to UCS-4. We *must* use a 0-d array since # NumPy scalars inherit the UCS-2 encoding from Python (see # NumPy ticket #525). Since ``_tobuffer()`` can't return an # array, we must override ``toarray()`` itself. def toarray(self, object_): if isinstance(object_, bytes): warnings.warn("Storing bytestrings in VLUnicodeAtom is " "deprecated.", DeprecationWarning) elif not isinstance(object_, str): raise TypeError(f"object is not a string: {object_!r}") ustr = str(object_) uarr = np.array(ustr, dtype='U') return np.ndarray( buffer=uarr, dtype=self.base.dtype, shape=len(ustr)) def _tobuffer(self, object_): # This works (and is used) only with UCS-4 builds of Python, # where the width of the internal representation of a # character matches that of the base atoms. if isinstance(object_, bytes): warnings.warn("Storing bytestrings in VLUnicodeAtom is " "deprecated.", DeprecationWarning) elif not isinstance(object_, str): raise TypeError(f"object is not a string: {object_!r}") return np.str_(object_) def fromarray(self, array): length = len(array) if length == 0: return '' # ``array.view('U0')`` raises a `TypeError` return array.view('U%d' % length).item()
()
729,237
tables.atom
_tobuffer
null
def _tobuffer(self, object_): # This works (and is used) only with UCS-4 builds of Python, # where the width of the internal representation of a # character matches that of the base atoms. if isinstance(object_, bytes): warnings.warn("Storing bytestrings in VLUnicodeAtom is " "deprecated.", DeprecationWarning) elif not isinstance(object_, str): raise TypeError(f"object is not a string: {object_!r}") return np.str_(object_)
(self, object_)
729,238
tables.atom
fromarray
null
def fromarray(self, array): length = len(array) if length == 0: return '' # ``array.view('U0')`` raises a `TypeError` return array.view('U%d' % length).item()
(self, array)
729,239
tables.atom
toarray
null
def toarray(self, object_): if isinstance(object_, bytes): warnings.warn("Storing bytestrings in VLUnicodeAtom is " "deprecated.", DeprecationWarning) elif not isinstance(object_, str): raise TypeError(f"object is not a string: {object_!r}") ustr = str(object_) uarr = np.array(ustr, dtype='U') return np.ndarray( buffer=uarr, dtype=self.base.dtype, shape=len(ustr))
(self, object_)
729,247
tables.path
check_name_validity
Check the validity of the `name` of a Node object, which more limited than attribute names. If the name is not valid, a ``ValueError`` is raised. If it is valid but it can not be used with natural naming, a `NaturalNameWarning` is issued. >>> warnings.simplefilter("ignore") >>> check_name_validity('a') >>> check_name_validity('a_b') >>> check_name_validity('a:b') # NaturalNameWarning >>> check_name_validity('/a/b') Traceback (most recent call last): ... ValueError: the ``/`` character is not allowed in object names: '/a/b' >>> check_name_validity('.') Traceback (most recent call last): ... ValueError: ``.`` is not allowed as an object name >>> check_name_validity('') Traceback (most recent call last): ... ValueError: the empty string is not allowed as an object name
def check_name_validity(name): """Check the validity of the `name` of a Node object, which more limited than attribute names. If the name is not valid, a ``ValueError`` is raised. If it is valid but it can not be used with natural naming, a `NaturalNameWarning` is issued. >>> warnings.simplefilter("ignore") >>> check_name_validity('a') >>> check_name_validity('a_b') >>> check_name_validity('a:b') # NaturalNameWarning >>> check_name_validity('/a/b') Traceback (most recent call last): ... ValueError: the ``/`` character is not allowed in object names: '/a/b' >>> check_name_validity('.') Traceback (most recent call last): ... ValueError: ``.`` is not allowed as an object name >>> check_name_validity('') Traceback (most recent call last): ... ValueError: the empty string is not allowed as an object name """ check_attribute_name(name) # Check whether `name` is a valid HDF5 name. # http://hdfgroup.org/HDF5/doc/UG/03_Model.html#Structure if name == '.': raise ValueError("``.`` is not allowed as an object name") elif '/' in name: raise ValueError("the ``/`` character is not allowed " "in object names: %r" % name)
(name)
729,250
tables.file
copy_file
An easy way of copying one PyTables file to another. This function allows you to copy an existing PyTables file named srcfilename to another file called dstfilename. The source file must exist and be readable. The destination file can be overwritten in place if existing by asserting the overwrite argument. This function is a shorthand for the :meth:`File.copy_file` method, which acts on an already opened file. kwargs takes keyword arguments used to customize the copying process. See the documentation of :meth:`File.copy_file` for a description of those arguments.
def copy_file(srcfilename, dstfilename, overwrite=False, **kwargs): """An easy way of copying one PyTables file to another. This function allows you to copy an existing PyTables file named srcfilename to another file called dstfilename. The source file must exist and be readable. The destination file can be overwritten in place if existing by asserting the overwrite argument. This function is a shorthand for the :meth:`File.copy_file` method, which acts on an already opened file. kwargs takes keyword arguments used to customize the copying process. See the documentation of :meth:`File.copy_file` for a description of those arguments. """ # Open the source file. srcfileh = open_file(srcfilename, mode="r") try: # Copy it to the destination file. srcfileh.copy_file(dstfilename, overwrite=overwrite, **kwargs) finally: # Close the source file. srcfileh.close()
(srcfilename, dstfilename, overwrite=False, **kwargs)
729,251
tables.description
descr_from_dtype
Get a description instance and byteorder from a (nested) NumPy dtype.
def descr_from_dtype(dtype_, ptparams=None): """Get a description instance and byteorder from a (nested) NumPy dtype.""" fields = {} fbyteorder = '|' for name in dtype_.names: dtype, offset = dtype_.fields[name][:2] kind = dtype.base.kind byteorder = dtype.base.byteorder if byteorder in '><=': if fbyteorder not in ['|', byteorder]: raise NotImplementedError( "structured arrays with mixed byteorders " "are not supported yet, sorry") fbyteorder = byteorder # Non-nested column if kind in 'biufSUc': col = Col.from_dtype(dtype, pos=offset, _offset=offset) # Nested column elif kind == 'V' and dtype.shape in [(), (1,)]: if dtype.shape != (): warnings.warn( "nested descriptions will be converted to scalar") col, _ = descr_from_dtype(dtype.base, ptparams=ptparams) col._v_pos = offset col._v_offset = offset else: raise NotImplementedError( "structured arrays with columns with type description ``%s`` " "are not supported yet, sorry" % dtype) fields[name] = col return Description(fields, ptparams=ptparams), fbyteorder
(dtype_, ptparams=None)
729,253
tables.description
dtype_from_descr
Get a (nested) NumPy dtype from a description instance and byteorder. The descr parameter can be a Description or IsDescription instance, sub-class of IsDescription or a dictionary.
def dtype_from_descr(descr, byteorder=None, ptparams=None): """Get a (nested) NumPy dtype from a description instance and byteorder. The descr parameter can be a Description or IsDescription instance, sub-class of IsDescription or a dictionary. """ if isinstance(descr, dict): descr = Description(descr, ptparams=ptparams) elif (type(descr) == type(IsDescription) and issubclass(descr, IsDescription)): descr = Description(descr().columns, ptparams=ptparams) elif isinstance(descr, IsDescription): descr = Description(descr.columns, ptparams=ptparams) elif not isinstance(descr, Description): raise ValueError('invalid description: %r' % descr) dtype_ = descr._v_dtype if byteorder and byteorder != '|': dtype_ = dtype_.newbyteorder(byteorder) return dtype_
(descr, byteorder=None, ptparams=None)
729,261
tables
get_hdf5_version
null
def get_hdf5_version(): warnings.warn( "the 'get_hdf5_version()' function is deprecated and could be " "removed in future versions. Please use 'tables.hdf5_version'", DeprecationWarning) return hdf5_version
()
729,262
tables
get_pytables_version
null
def get_pytables_version(): warnings.warn( "the 'get_pytables_version()' function is deprecated and could be " "removed in future versions. Please use 'tables.__version__'", DeprecationWarning) return __version__
()
729,277
tables.file
open_file
Open a PyTables (or generic HDF5) file and return a File object. Parameters ---------- filename : str The name of the file (supports environment variable expansion). It is suggested that file names have any of the .h5, .hdf or .hdf5 extensions, although this is not mandatory. mode : str The mode to open the file. It can be one of the following: * *'r'*: Read-only; no data can be modified. * *'w'*: Write; a new file is created (an existing file with the same name would be deleted). * *'a'*: Append; an existing file is opened for reading and writing, and if the file does not exist it is created. * *'r+'*: It is similar to 'a', but the file must already exist. title : str If the file is to be created, a TITLE string attribute will be set on the root group with the given value. Otherwise, the title will be read from disk, and this will not have any effect. root_uep : str The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken as the starting point to create the object tree. It can be whatever existing group in the file, named by its HDF5 path. If it does not exist, an HDF5ExtError is issued. Use this if you do not want to build the *entire* object tree, but rather only a *subtree* of it. .. versionchanged:: 3.0 The *rootUEP* parameter has been renamed into *root_uep*. filters : Filters An instance of the Filters (see :ref:`FiltersClassDescr`) class that provides information about the desired I/O filters applicable to the leaves that hang directly from the *root group*, unless other filter properties are specified for these leaves. Besides, if you do not specify filter properties for child groups, they will inherit these ones, which will in turn propagate to child nodes. Notes ----- In addition, it recognizes the (lowercase) names of parameters present in :file:`tables/parameters.py` as additional keyword arguments. See :ref:`parameter_files` for a detailed info on the supported parameters. .. note:: If you need to deal with a large number of nodes in an efficient way, please see :ref:`LRUOptim` for more info and advices about the integrated node cache engine.
def open_file(filename, mode="r", title="", root_uep="/", filters=None, **kwargs): """Open a PyTables (or generic HDF5) file and return a File object. Parameters ---------- filename : str The name of the file (supports environment variable expansion). It is suggested that file names have any of the .h5, .hdf or .hdf5 extensions, although this is not mandatory. mode : str The mode to open the file. It can be one of the following: * *'r'*: Read-only; no data can be modified. * *'w'*: Write; a new file is created (an existing file with the same name would be deleted). * *'a'*: Append; an existing file is opened for reading and writing, and if the file does not exist it is created. * *'r+'*: It is similar to 'a', but the file must already exist. title : str If the file is to be created, a TITLE string attribute will be set on the root group with the given value. Otherwise, the title will be read from disk, and this will not have any effect. root_uep : str The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken as the starting point to create the object tree. It can be whatever existing group in the file, named by its HDF5 path. If it does not exist, an HDF5ExtError is issued. Use this if you do not want to build the *entire* object tree, but rather only a *subtree* of it. .. versionchanged:: 3.0 The *rootUEP* parameter has been renamed into *root_uep*. filters : Filters An instance of the Filters (see :ref:`FiltersClassDescr`) class that provides information about the desired I/O filters applicable to the leaves that hang directly from the *root group*, unless other filter properties are specified for these leaves. Besides, if you do not specify filter properties for child groups, they will inherit these ones, which will in turn propagate to child nodes. Notes ----- In addition, it recognizes the (lowercase) names of parameters present in :file:`tables/parameters.py` as additional keyword arguments. See :ref:`parameter_files` for a detailed info on the supported parameters. .. note:: If you need to deal with a large number of nodes in an efficient way, please see :ref:`LRUOptim` for more info and advices about the integrated node cache engine. """ filename = os.fspath(filename) # XXX filename normalization ?? # Check already opened files if _FILE_OPEN_POLICY == 'strict': # This policy does not allow to open the same file multiple times # even in read-only mode if filename in _open_files: raise ValueError( "The file '%s' is already opened. " "Please close it before reopening. " "HDF5 v.%s, FILE_OPEN_POLICY = '%s'" % ( filename, utilsextension.get_hdf5_version(), _FILE_OPEN_POLICY)) else: for filehandle in _open_files.get_handlers_by_name(filename): omode = filehandle.mode # 'r' is incompatible with everything except 'r' itself if mode == 'r' and omode != 'r': raise ValueError( "The file '%s' is already opened, but " "not in read-only mode (as requested)." % filename) # 'a' and 'r+' are compatible with everything except 'r' elif mode in ('a', 'r+') and omode == 'r': raise ValueError( "The file '%s' is already opened, but " "in read-only mode. Please close it before " "reopening in append mode." % filename) # 'w' means that we want to destroy existing contents elif mode == 'w': raise ValueError( "The file '%s' is already opened. Please " "close it before reopening in write mode." % filename) # Finally, create the File instance, and return it return File(filename, mode, title, root_uep, filters, **kwargs)
(filename, mode='r', title='', root_uep='/', filters=None, **kwargs)
729,283
tables.tests.common
print_versions
Print all the versions of software that PyTables relies on.
def print_versions(): """Print all the versions of software that PyTables relies on.""" print('-=' * 38) print("PyTables version: %s" % tb.__version__) print("HDF5 version: %s" % tb.which_lib_version("hdf5")[1]) print("NumPy version: %s" % np.__version__) tinfo = tb.which_lib_version("zlib") if ne.use_vml: # Get only the main version number and strip out all the rest vml_version = ne.get_vml_version() vml_version = re.findall("[0-9.]+", vml_version)[0] vml_avail = "using VML/MKL %s" % vml_version else: vml_avail = "not using Intel's VML/MKL" print(f"Numexpr version: {ne.__version__} ({vml_avail})") if tinfo is not None: print(f"Zlib version: {tinfo[1]} (in Python interpreter)") tinfo = tb.which_lib_version("lzo") if tinfo is not None: print("LZO version: {} ({})".format(tinfo[1], tinfo[2])) tinfo = tb.which_lib_version("bzip2") if tinfo is not None: print("BZIP2 version: {} ({})".format(tinfo[1], tinfo[2])) tinfo = tb.which_lib_version("blosc") if tinfo is not None: blosc_date = tinfo[2].split()[1] print("Blosc version: {} ({})".format(tinfo[1], blosc_date)) blosc_cinfo = tb.blosc_get_complib_info() blosc_cinfo = [ "{} ({})".format(k, v[1]) for k, v in sorted(blosc_cinfo.items()) ] print("Blosc compressors: %s" % ', '.join(blosc_cinfo)) blosc_finfo = ['shuffle', 'bitshuffle'] print("Blosc filters: %s" % ', '.join(blosc_finfo)) tinfo = tb.which_lib_version("blosc2") if tinfo is not None: blosc2_date = tinfo[2].split()[1] print("Blosc2 version: {} ({})".format(tinfo[1], blosc2_date)) blosc2_cinfo = tb.blosc2_get_complib_info() blosc2_cinfo = [ "{} ({})".format(k, v[1]) for k, v in sorted(blosc2_cinfo.items()) ] print("Blosc2 compressors: %s" % ', '.join(blosc2_cinfo)) blosc2_finfo = ['shuffle', 'bitshuffle'] print("Blosc2 filters: %s" % ', '.join(blosc2_finfo)) try: from Cython import __version__ as cython_version print('Cython version: %s' % cython_version) except Exception: pass print('Python version: %s' % sys.version) print('Platform: %s' % platform.platform()) # if os.name == 'posix': # (sysname, nodename, release, version, machine) = os.uname() # print('Platform: %s-%s' % (sys.platform, machine)) print('Byte-ordering: %s' % sys.byteorder) print('Detected cores: %s' % tb.utils.detect_number_of_cores()) print('Default encoding: %s' % sys.getdefaultencoding()) print('Default FS encoding: %s' % sys.getfilesystemencoding()) print('Default locale: (%s, %s)' % locale.getdefaultlocale()) print('-=' * 38) # This should improve readability whan tests are run by CI tools sys.stdout.flush()
()
729,287
tables.flavor
restrict_flavors
Disable all flavors except those in keep. Providing an empty keep sequence implies disabling all flavors (but the internal one). If the sequence is not specified, only optional flavors are disabled. .. important:: Once you disable a flavor, it can not be enabled again.
def restrict_flavors(keep=('python',)): """Disable all flavors except those in keep. Providing an empty keep sequence implies disabling all flavors (but the internal one). If the sequence is not specified, only optional flavors are disabled. .. important:: Once you disable a flavor, it can not be enabled again. """ remove = set(all_flavors) - set(keep) - {internal_flavor} for flavor in remove: _disable_flavor(flavor)
(keep=('python',))
729,288
tables.description
same_position
Decorate `oldmethod` to also compare the `_v_pos` attribute.
def same_position(oldmethod): """Decorate `oldmethod` to also compare the `_v_pos` attribute.""" def newmethod(self, other): try: other._v_pos except AttributeError: return False # not a column definition return self._v_pos == other._v_pos and oldmethod(self, other) newmethod.__name__ = oldmethod.__name__ newmethod.__doc__ = oldmethod.__doc__ return newmethod
(oldmethod)
729,289
tables.atom
split_type
Split a PyTables type into a PyTables kind and an item size. Returns a tuple of (kind, itemsize). If no item size is present in the type (in the form of a precision), the returned item size is None:: >>> split_type('int32') ('int', 4) >>> split_type('string') ('string', None) >>> split_type('int20') Traceback (most recent call last): ... ValueError: precision must be a multiple of 8: 20 >>> split_type('foo bar') Traceback (most recent call last): ... ValueError: malformed type: 'foo bar'
def split_type(type): """Split a PyTables type into a PyTables kind and an item size. Returns a tuple of (kind, itemsize). If no item size is present in the type (in the form of a precision), the returned item size is None:: >>> split_type('int32') ('int', 4) >>> split_type('string') ('string', None) >>> split_type('int20') Traceback (most recent call last): ... ValueError: precision must be a multiple of 8: 20 >>> split_type('foo bar') Traceback (most recent call last): ... ValueError: malformed type: 'foo bar' """ match = _type_re.match(type) if not match: raise ValueError("malformed type: %r" % type) kind, precision = match.groups() itemsize = None if precision: precision = int(precision) itemsize, remainder = divmod(precision, 8) if remainder: # 0 could be a valid item size raise ValueError("precision must be a multiple of 8: %d" % precision) return (kind, itemsize)
(type)
729,292
tables.tests.test_suite
test
Run all the tests in the test suite. If *verbose* is set, the test suite will emit messages with full verbosity (not recommended unless you are looking into a certain problem). If *heavy* is set, the test suite will be run in *heavy* mode (you should be careful with this because it can take a lot of time and resources from your computer). Return 0 (os.EX_OK) if all tests pass, 1 in case of failure
def test(verbose=False, heavy=False): """Run all the tests in the test suite. If *verbose* is set, the test suite will emit messages with full verbosity (not recommended unless you are looking into a certain problem). If *heavy* is set, the test suite will be run in *heavy* mode (you should be careful with this because it can take a lot of time and resources from your computer). Return 0 (os.EX_OK) if all tests pass, 1 in case of failure """ common.print_versions() common.print_heavy(heavy) # What a context this is! # oldverbose, common.verbose = common.verbose, verbose oldheavy, common.heavy = common.heavy, heavy try: result = common.unittest.TextTestRunner( verbosity=1 + int(verbose)).run(suite()) if result.wasSuccessful(): return 0 else: return 1 finally: # common.verbose = oldverbose common.heavy = oldheavy # there are pretty young heavies, too ;)
(verbose=False, heavy=False)
729,300
cryptography.hazmat.primitives.ciphers.algorithms
AES
null
class AES(BlockCipherAlgorithm): name = "AES" block_size = 128 # 512 added to support AES-256-XTS, which uses 512-bit keys key_sizes = frozenset([128, 192, 256, 512]) def __init__(self, key: bytes): self.key = _verify_key_size(self, key) @property def key_size(self) -> int: return len(self.key) * 8
(key: bytes)
729,301
cryptography.hazmat.primitives.ciphers.algorithms
__init__
null
def __init__(self, key: bytes): self.key = _verify_key_size(self, key)
(self, key: bytes)
729,302
tinytuya.core
AESCipher
null
class AESCipher(_AESCipher_PyCrypto): CRYPTOLIB = CRYPTOLIB CRYPTOLIB_VER = '.'.join( [str(x) for x in Crypto.version_info] ) CRYPTOLIB_HAS_GCM = getattr( AES, 'MODE_GCM', False ) # only PyCryptodome supports GCM, PyCrypto does not
(key)
729,304
tinytuya.core
_pad
null
@staticmethod def _pad(s, bs): padnum = bs - len(s) % bs return s + padnum * chr(padnum).encode()
(s, bs)
729,305
tinytuya.core
_unpad
null
@staticmethod def _unpad(s, verify_padding=False): padlen = ord(s[-1:]) if padlen < 1 or padlen > 16: raise ValueError("invalid padding length byte") if verify_padding and s[-padlen:] != (padlen * chr(padlen).encode()): raise ValueError("invalid padding data") return s[:-padlen]
(s, verify_padding=False)
729,306
tinytuya.core
decrypt
null
def decrypt(self, enc, use_base64=True, decode_text=True, verify_padding=False, iv=False, header=None, tag=None): if not iv: if use_base64: enc = base64.b64decode(enc) if len(enc) % 16 != 0: raise ValueError("invalid length") if iv: iv, enc = self.get_decryption_iv( iv, enc ) if tag is None: decryptor = Crypto( AES(self.key), Crypto_modes.CTR(iv + b'\x00\x00\x00\x02') ).decryptor() else: decryptor = Crypto( AES(self.key), Crypto_modes.GCM(iv, tag) ).decryptor() if header and (tag is not None): decryptor.authenticate_additional_data( header ) raw = decryptor.update( enc ) + decryptor.finalize() else: decryptor = Crypto( AES(self.key), Crypto_modes.ECB() ).decryptor() raw = decryptor.update( enc ) + decryptor.finalize() raw = self._unpad(raw, verify_padding) return raw.decode("utf-8") if decode_text else raw
(self, enc, use_base64=True, decode_text=True, verify_padding=False, iv=False, header=None, tag=None)
729,307
tinytuya.core
encrypt
null
def encrypt(self, raw, use_base64=True, pad=True, iv=False, header=None): # pylint: disable=W0621 if iv: # initialization vector or nonce (number used once) iv = self.get_encryption_iv( iv ) encryptor = Crypto( AES(self.key), Crypto_modes.GCM(iv) ).encryptor() if header: encryptor.authenticate_additional_data(header) crypted_text = encryptor.update(raw) + encryptor.finalize() crypted_text = iv + crypted_text + encryptor.tag else: if pad: raw = self._pad(raw, 16) encryptor = Crypto( AES(self.key), Crypto_modes.ECB() ).encryptor() crypted_text = encryptor.update(raw) + encryptor.finalize() return base64.b64encode(crypted_text) if use_base64 else crypted_text
(self, raw, use_base64=True, pad=True, iv=False, header=None)
729,308
tinytuya.BulbDevice
BulbDevice
Represents a Tuya based Smart Light/Bulb. This class supports two types of bulbs with different DPS mappings and functions: Type A - Uses DPS index 1-5 Type B - Uses DPS index 20-27 (no index 1) Type C - Same as Type A except that it is using DPS 2 for brightness, which ranges from 0-1000. These are the Feit branded dimmers found at Costco.
class BulbDevice(Device): """ Represents a Tuya based Smart Light/Bulb. This class supports two types of bulbs with different DPS mappings and functions: Type A - Uses DPS index 1-5 Type B - Uses DPS index 20-27 (no index 1) Type C - Same as Type A except that it is using DPS 2 for brightness, which ranges from 0-1000. These are the Feit branded dimmers found at Costco. """ # Two types of Bulbs - TypeA uses DPS 1-5, TypeB uses DPS 20-24 DPS_INDEX_ON = {"A": "1", "B": "20", "C": "1"} DPS_INDEX_MODE = {"A": "2", "B": "21", "C": "1"} DPS_INDEX_BRIGHTNESS = {"A": "3", "B": "22", "C": "2"} DPS_INDEX_COLOURTEMP = {"A": "4", "B": "23", "C": None} DPS_INDEX_COLOUR = {"A": "5", "B": "24", "C": None} DPS_INDEX_SCENE = {"A": "2", "B": "25", "C": None} DPS_INDEX_TIMER = {"A": None, "B": "26", "C": None} DPS_INDEX_MUSIC = {"A": None, "B": "27", "C": None} DPS = "dps" DPS_MODE_WHITE = "white" DPS_MODE_COLOUR = "colour" DPS_MODE_SCENE = "scene" DPS_MODE_MUSIC = "music" DPS_MODE_SCENE_1 = "scene_1" # nature DPS_MODE_SCENE_2 = "scene_2" DPS_MODE_SCENE_3 = "scene_3" # rave DPS_MODE_SCENE_4 = "scene_4" # rainbow DPS_2_STATE = { "1": "is_on", "2": "mode", "3": "brightness", "4": "colourtemp", "5": "colour", "20": "is_on", "21": "mode", "22": "brightness", "23": "colourtemp", "24": "colour", } # Set Default Bulb Types bulb_type = "A" has_brightness = False has_colourtemp = False has_colour = False def __init__(self, *args, **kwargs): # set the default version to None so we do not immediately connect and call status() if 'version' not in kwargs or not kwargs['version']: kwargs['version'] = None super(BulbDevice, self).__init__(*args, **kwargs) @staticmethod def _rgb_to_hexvalue(r, g, b, bulb="A"): """ Convert an RGB value to the hex representation expected by Tuya Bulb. Index (DPS_INDEX_COLOUR) is assumed to be in the format: (Type A) Index: 5 in hex format: rrggbb0hhhssvv (Type B) Index: 24 in hex format: hhhhssssvvvv While r, g and b are just hexadecimal values of the corresponding Red, Green and Blue values, the h, s and v values (which are values between 0 and 1) are scaled: Type A: 360 (h) and 255 (s and v) Type B: 360 (h) and 1000 (s and v) Args: r(int): Value for the colour red as int from 0-255. g(int): Value for the colour green as int from 0-255. b(int): Value for the colour blue as int from 0-255. """ rgb = [r, g, b] hsv = colorsys.rgb_to_hsv(rgb[0] / 255.0, rgb[1] / 255.0, rgb[2] / 255.0) # Bulb Type A if bulb == "A": # h:0-360,s:0-255,v:0-255|hsv| hexvalue = "" for value in rgb: temp = str(hex(int(value))).replace("0x", "") if len(temp) == 1: temp = "0" + temp hexvalue = hexvalue + temp hsvarray = [int(hsv[0] * 360), int(hsv[1] * 255), int(hsv[2] * 255)] hexvalue_hsv = "" for value in hsvarray: temp = str(hex(int(value))).replace("0x", "") if len(temp) == 1: temp = "0" + temp hexvalue_hsv = hexvalue_hsv + temp if len(hexvalue_hsv) == 7: hexvalue = hexvalue + "0" + hexvalue_hsv else: hexvalue = hexvalue + "00" + hexvalue_hsv # Bulb Type B if bulb == "B": # h:0-360,s:0-1000,v:0-1000|hsv| hexvalue = "" hsvarray = [int(hsv[0] * 360), int(hsv[1] * 1000), int(hsv[2] * 1000)] for value in hsvarray: temp = str(hex(int(value))).replace("0x", "") while len(temp) < 4: temp = "0" + temp hexvalue = hexvalue + temp return hexvalue @staticmethod def _hexvalue_to_rgb(hexvalue, bulb="A"): """ Converts the hexvalue used by Tuya for colour representation into an RGB value. Args: hexvalue(string): The hex representation generated by BulbDevice._rgb_to_hexvalue() """ if bulb == "A": r = int(hexvalue[0:2], 16) g = int(hexvalue[2:4], 16) b = int(hexvalue[4:6], 16) if bulb == "B": # hexvalue is in hsv h = float(int(hexvalue[0:4], 16) / 360.0) s = float(int(hexvalue[4:8], 16) / 1000.0) v = float(int(hexvalue[8:12], 16) / 1000.0) rgb = colorsys.hsv_to_rgb(h, s, v) r = int(rgb[0] * 255) g = int(rgb[1] * 255) b = int(rgb[2] * 255) return (r, g, b) @staticmethod def _hexvalue_to_hsv(hexvalue, bulb="A"): """ Converts the hexvalue used by Tuya for colour representation into an HSV value. Args: hexvalue(string): The hex representation generated by BulbDevice._rgb_to_hexvalue() """ if bulb == "A": h = int(hexvalue[7:10], 16) / 360.0 s = int(hexvalue[10:12], 16) / 255.0 v = int(hexvalue[12:14], 16) / 255.0 if bulb == "B": # hexvalue is in hsv h = int(hexvalue[0:4], 16) / 360.0 s = int(hexvalue[4:8], 16) / 1000.0 v = int(hexvalue[8:12], 16) / 1000.0 return (h, s, v) def set_version(self, version): # pylint: disable=W0621 """ Set the Tuya device version 3.1 or 3.3 for BulbDevice Attempt to determine BulbDevice Type: A or B based on: Type A has keys 1-5 (default) Type B has keys 20-29 Type C is Feit type bulbs from costco """ super(BulbDevice, self).set_version(version) # Try to determine type of BulbDevice Type based on DPS indexes status = self.status() if status is not None: if "dps" in status: if "1" not in status["dps"]: self.bulb_type = "B" if self.DPS_INDEX_BRIGHTNESS[self.bulb_type] in status["dps"]: self.has_brightness = True if self.DPS_INDEX_COLOURTEMP[self.bulb_type] in status["dps"]: self.has_colourtemp = True if self.DPS_INDEX_COLOUR[self.bulb_type] in status["dps"]: self.has_colour = True else: self.bulb_type = "B" else: # response has no dps self.bulb_type = "B" log.debug("bulb type set to %s", self.bulb_type) def turn_on(self, switch=0, nowait=False): """Turn the device on""" if switch == 0: switch = self.DPS_INDEX_ON[self.bulb_type] self.set_status(True, switch, nowait=nowait) def turn_off(self, switch=0, nowait=False): """Turn the device on""" if switch == 0: switch = self.DPS_INDEX_ON[self.bulb_type] self.set_status(False, switch, nowait=nowait) def set_bulb_type(self, type): self.bulb_type = type def set_mode(self, mode="white", nowait=False): """ Set bulb mode Args: mode(string): white,colour,scene,music nowait(bool): True to send without waiting for response. """ payload = self.generate_payload( CONTROL, {self.DPS_INDEX_MODE[self.bulb_type]: mode} ) data = self._send_receive(payload, getresponse=(not nowait)) return data def set_scene(self, scene, nowait=False): """ Set to scene mode Args: scene(int): Value for the scene as int from 1-4. nowait(bool): True to send without waiting for response. """ if not 1 <= scene <= 4: return error_json( ERR_RANGE, "set_scene: The value for scene needs to be between 1 and 4." ) if scene == 1: s = self.DPS_MODE_SCENE_1 elif scene == 2: s = self.DPS_MODE_SCENE_2 elif scene == 3: s = self.DPS_MODE_SCENE_3 else: s = self.DPS_MODE_SCENE_4 payload = self.generate_payload( CONTROL, {self.DPS_INDEX_MODE[self.bulb_type]: s} ) data = self._send_receive(payload, getresponse=(not nowait)) return data def set_colour(self, r, g, b, nowait=False): """ Set colour of an rgb bulb. Args: r(int): Value for the colour Red as int from 0-255. g(int): Value for the colour Green as int from 0-255. b(int): Value for the colour Blue as int from 0-255. nowait(bool): True to send without waiting for response. """ if not self.has_colour: log.debug("set_colour: Device does not appear to support color.") # return error_json(ERR_FUNCTION, "set_colour: Device does not support color.") if not 0 <= r <= 255: return error_json( ERR_RANGE, "set_colour: The value for red needs to be between 0 and 255.", ) if not 0 <= g <= 255: return error_json( ERR_RANGE, "set_colour: The value for green needs to be between 0 and 255.", ) if not 0 <= b <= 255: return error_json( ERR_RANGE, "set_colour: The value for blue needs to be between 0 and 255.", ) hexvalue = BulbDevice._rgb_to_hexvalue(r, g, b, self.bulb_type) payload = self.generate_payload( CONTROL, { self.DPS_INDEX_MODE[self.bulb_type]: self.DPS_MODE_COLOUR, self.DPS_INDEX_COLOUR[self.bulb_type]: hexvalue, }, ) data = self._send_receive(payload, getresponse=(not nowait)) return data def set_hsv(self, h, s, v, nowait=False): """ Set colour of an rgb bulb using h, s, v. Args: h(float): colour Hue as float from 0-1 s(float): colour Saturation as float from 0-1 v(float): colour Value as float from 0-1 nowait(bool): True to send without waiting for response. """ if not self.has_colour: log.debug("set_hsv: Device does not appear to support color.") # return error_json(ERR_FUNCTION, "set_hsv: Device does not support color.") if not 0 <= h <= 1.0: return error_json( ERR_RANGE, "set_hsv: The value for Hue needs to be between 0 and 1." ) if not 0 <= s <= 1.0: return error_json( ERR_RANGE, "set_hsv: The value for Saturation needs to be between 0 and 1.", ) if not 0 <= v <= 1.0: return error_json( ERR_RANGE, "set_hsv: The value for Value needs to be between 0 and 1.", ) (r, g, b) = colorsys.hsv_to_rgb(h, s, v) hexvalue = BulbDevice._rgb_to_hexvalue( r * 255.0, g * 255.0, b * 255.0, self.bulb_type ) payload = self.generate_payload( CONTROL, { self.DPS_INDEX_MODE[self.bulb_type]: self.DPS_MODE_COLOUR, self.DPS_INDEX_COLOUR[self.bulb_type]: hexvalue, }, ) data = self._send_receive(payload, getresponse=(not nowait)) return data def set_white_percentage(self, brightness=100, colourtemp=0, nowait=False): """ Set white coloured theme of an rgb bulb. Args: brightness(int): Value for the brightness in percent (0-100) colourtemp(int): Value for the colour temperature in percent (0-100) nowait(bool): True to send without waiting for response. """ # Brightness if not 0 <= brightness <= 100: return error_json( ERR_RANGE, "set_white_percentage: Brightness percentage needs to be between 0 and 100.", ) b = int(25 + (255 - 25) * brightness / 100) if self.bulb_type == "B": b = int(10 + (1000 - 10) * brightness / 100) # Colourtemp if not 0 <= colourtemp <= 100: return error_json( ERR_RANGE, "set_white_percentage: Colourtemp percentage needs to be between 0 and 100.", ) c = int(255 * colourtemp / 100) if self.bulb_type == "B": c = int(1000 * colourtemp / 100) data = self.set_white(b, c, nowait=nowait) return data def set_white(self, brightness=-1, colourtemp=-1, nowait=False): """ Set white coloured theme of an rgb bulb. Args: brightness(int): Value for the brightness (A:25-255 or B:10-1000) colourtemp(int): Value for the colour temperature (A:0-255, B:0-1000). nowait(bool): True to send without waiting for response. Default: Max Brightness and Min Colourtemp """ # Brightness (default Max) if brightness < 0: brightness = 255 if self.bulb_type == "B": brightness = 1000 if self.bulb_type == "A" and not 25 <= brightness <= 255: return error_json( ERR_RANGE, "set_white: The brightness needs to be between 25 and 255." ) if self.bulb_type == "B" and not 10 <= brightness <= 1000: return error_json( ERR_RANGE, "set_white: The brightness needs to be between 10 and 1000." ) # Colourtemp (default Min) if colourtemp < 0: colourtemp = 0 if self.bulb_type == "A" and not 0 <= colourtemp <= 255: return error_json( ERR_RANGE, "set_white: The colour temperature needs to be between 0 and 255.", ) if self.bulb_type == "B" and not 0 <= colourtemp <= 1000: return error_json( ERR_RANGE, "set_white: The colour temperature needs to be between 0 and 1000.", ) payload = self.generate_payload( CONTROL, { self.DPS_INDEX_MODE[self.bulb_type]: self.DPS_MODE_WHITE, self.DPS_INDEX_BRIGHTNESS[self.bulb_type]: brightness, self.DPS_INDEX_COLOURTEMP[self.bulb_type]: colourtemp, }, ) data = self._send_receive(payload, getresponse=(not nowait)) return data def set_brightness_percentage(self, brightness=100, nowait=False): """ Set the brightness value of an rgb bulb. Args: brightness(int): Value for the brightness in percent (0-100) nowait(bool): True to send without waiting for response. """ if not 0 <= brightness <= 100: return error_json( ERR_RANGE, "set_brightness_percentage: Brightness percentage needs to be between 0 and 100.", ) b = int(25 + (255 - 25) * brightness / 100) if self.bulb_type == "B": b = int(10 + (1000 - 10) * brightness / 100) data = self.set_brightness(b, nowait=nowait) return data def set_brightness(self, brightness, nowait=False): """ Set the brightness value of an rgb bulb. Args: brightness(int): Value for the brightness (25-255). nowait(bool): True to send without waiting for response. """ if self.bulb_type == "A" and not 25 <= brightness <= 255: return error_json( ERR_RANGE, "set_brightness: The brightness needs to be between 25 and 255.", ) if self.bulb_type == "B" and not 10 <= brightness <= 1000: return error_json( ERR_RANGE, "set_brightness: The brightness needs to be between 10 and 1000.", ) # Determine which mode bulb is in and adjust accordingly state = self.state() data = None if "mode" in state: if state["mode"] == "white": # for white mode use DPS for brightness if not self.has_brightness: log.debug("set_brightness: Device does not appear to support brightness.") # return error_json(ERR_FUNCTION, "set_brightness: Device does not support brightness.") payload = self.generate_payload( CONTROL, {self.DPS_INDEX_BRIGHTNESS[self.bulb_type]: brightness} ) data = self._send_receive(payload, getresponse=(not nowait)) if state["mode"] == "colour": # for colour mode use hsv to increase brightness if self.bulb_type == "A": value = brightness / 255.0 else: value = brightness / 1000.0 (h, s, v) = self.colour_hsv() data = self.set_hsv(h, s, value, nowait=nowait) if data is not None or nowait is True: return data else: return error_json(ERR_STATE, "set_brightness: Unknown bulb state.") def set_colourtemp_percentage(self, colourtemp=100, nowait=False): """ Set the colour temperature of an rgb bulb. Args: colourtemp(int): Value for the colour temperature in percentage (0-100). nowait(bool): True to send without waiting for response. """ if not 0 <= colourtemp <= 100: return error_json( ERR_RANGE, "set_colourtemp_percentage: Colourtemp percentage needs to be between 0 and 100.", ) c = int(255 * colourtemp / 100) if self.bulb_type == "B": c = int(1000 * colourtemp / 100) data = self.set_colourtemp(c, nowait=nowait) return data def set_colourtemp(self, colourtemp, nowait=False): """ Set the colour temperature of an rgb bulb. Args: colourtemp(int): Value for the colour temperature (0-255). nowait(bool): True to send without waiting for response. """ if not self.has_colourtemp: log.debug("set_colourtemp: Device does not appear to support colortemp.") # return error_json(ERR_FUNCTION, "set_colourtemp: Device does not support colortemp.") if self.bulb_type == "A" and not 0 <= colourtemp <= 255: return error_json( ERR_RANGE, "set_colourtemp: The colour temperature needs to be between 0 and 255.", ) if self.bulb_type == "B" and not 0 <= colourtemp <= 1000: return error_json( ERR_RANGE, "set_colourtemp: The colour temperature needs to be between 0 and 1000.", ) payload = self.generate_payload( CONTROL, {self.DPS_INDEX_COLOURTEMP[self.bulb_type]: colourtemp} ) data = self._send_receive(payload, getresponse=(not nowait)) return data def brightness(self): """Return brightness value""" return self.status()[self.DPS][self.DPS_INDEX_BRIGHTNESS[self.bulb_type]] def colourtemp(self): """Return colour temperature""" return self.status()[self.DPS][self.DPS_INDEX_COLOURTEMP[self.bulb_type]] def colour_rgb(self): """Return colour as RGB value""" hexvalue = self.status()[self.DPS][self.DPS_INDEX_COLOUR[self.bulb_type]] return BulbDevice._hexvalue_to_rgb(hexvalue, self.bulb_type) def colour_hsv(self): """Return colour as HSV value""" hexvalue = self.status()[self.DPS][self.DPS_INDEX_COLOUR[self.bulb_type]] return BulbDevice._hexvalue_to_hsv(hexvalue, self.bulb_type) def state(self): """Return state of Bulb""" status = self.status() state = {} if not status: return error_json(ERR_JSON, "state: empty response") if "Error" in status.keys(): return error_json(ERR_JSON, status["Error"]) if self.DPS not in status.keys(): return error_json(ERR_JSON, "state: no data points") for key in status[self.DPS].keys(): if key in self.DPS_2_STATE: state[self.DPS_2_STATE[key]] = status[self.DPS][key] return state
(*args, **kwargs)
729,309
tinytuya.core
__del__
null
def __del__(self): # In case we have a lingering socket connection, close it try: if self.socket: # self.socket.shutdown(socket.SHUT_RDWR) self.socket.close() self.socket = None except: pass
(self)