{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import os\n", "import pathlib\n", "import glob" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "path = glob.glob(\"./train/*.png\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "485" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(path)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "485\n" ] } ], "source": [ "import json\n", "caption = []\n", "with open(\"./train/metadata.jsonl\", \"r\") as f:\n", " data = f.read()\n", " for l in data.split(\"\\n\"):\n", " caption.append(l)\n", "\n", "print(len(caption))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }