Datasets:

Languages:
English
ArXiv:
License:
File size: 9,424 Bytes
026fd78
 
 
 
 
41c9281
026fd78
41c9281
 
52094fb
026fd78
 
 
 
 
 
 
98e4c1c
 
026fd78
 
b4a01b1
eb7a7c1
52094fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e76b5c6
 
 
52094fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e76b5c6
 
 
52094fb
 
026fd78
 
 
 
 
 
 
b4a01b1
026fd78
 
 
b4a01b1
 
026fd78
 
 
 
 
 
 
 
 
 
 
 
 
6ff2b80
026fd78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ff2b80
 
 
52094fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- other
license_details: Microsoft Research Data License Agreement
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: metalwoz
pretty_name: Meta-Learning Wizard-of-Oz
dataset_info:
- config_name: dialogues
  features:
  - name: id
    dtype: string
  - name: user_id
    dtype: string
  - name: bot_id
    dtype: string
  - name: domain
    dtype: string
  - name: task_id
    dtype: string
  - name: turns
    sequence: string
  splits:
  - name: train
    num_bytes: 19999218
    num_examples: 37884
  - name: test
    num_bytes: 1284287
    num_examples: 2319
  download_size: 8629863
  dataset_size: 21283505
- config_name: tasks
  features:
  - name: task_id
    dtype: string
  - name: domain
    dtype: string
  - name: bot_prompt
    dtype: string
  - name: bot_role
    dtype: string
  - name: user_prompt
    dtype: string
  - name: user_role
    dtype: string
  splits:
  - name: train
    num_bytes: 73768
    num_examples: 227
  - name: test
    num_bytes: 4351
    num_examples: 14
  download_size: 8629863
  dataset_size: 78119
---

# Dataset Card for MetaLWOz

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [MetaLWOz Project Website](https://www.microsoft.com/en-us/research/project/metalwoz/)
- **Paper:** [Fast Domain Adaptation for Goal-Oriented Dialogue Using a Hybrid Generative-Retrieval Transformer](https://ieeexplore.ieee.org/abstract/document/9053599), and [Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation](https://arxiv.org/pdf/2003.01680.pdf)
- **Point of Contact:** [Hannes Schulz](https://www.microsoft.com/en-us/research/people/haschulz/)

### Dataset Summary

MetaLWOz: A Dataset of Multi-Domain Dialogues for the Fast Adaptation of Conversation Models. 
We introduce the Meta-Learning Wizard of Oz (MetaLWOz) dialogue dataset for developing fast adaptation methods for 
conversation models. This data can be used to train task-oriented dialogue models, specifically to develop methods to 
quickly simulate user responses with a small amount of data. Such fast-adaptation models fall into the research areas 
of transfer learning and meta learning. The dataset consists of 37,884 crowdsourced dialogues recorded between two 
human users in a Wizard of Oz setup, in which one was instructed to behave like a bot, and the other a true human 
user. The users are assigned a task belonging to a particular domain, for example booking a reservation at a 
particular restaurant, and work together to complete the task. Our dataset spans 47 domains having 227 tasks total. 
Dialogues are a minimum of 10 turns long.

### Supported Tasks and Leaderboards

This dataset supports a range of task.
- **Generative dialogue modeling** or `dialogue-modeling`: This data can be used to train task-oriented dialogue
 models, specifically to develop methods to quickly simulate user responses with a small amount of data. Such fast
-adaptation models fall into the research areas of transfer learning and meta learning. The text of the dialogues
  can be used to train a sequence model on the utterances. 
  Example of sample input/output is given in section [Data Instances](#data-instances)
 
  

### Languages

The text in the dataset is in English (`en`).

## Dataset Structure

### Data Instances

A data instance is a full multi-turn dialogue between two crowd-workers, one had the role of being a `bot`, and the other one was the `user`. Both were
given a `domain` and a `task`. Each turn has a single utterance, e.g.:
```
Domain: Ski
User Task: You want to know if there are good ski hills an
hour’s drive from your current location.
Bot Task: Tell the user that there are no ski hills in their
immediate location.
Bot: Hello how may I help you?
User: Is there any good ski hills an hour’s drive from my
current location?
Bot: I’m sorry to inform you that there are no ski hills in your
immediate location
User: Can you help me find the nearest?
Bot: Absolutely! It looks like you’re about 3 hours away from
Bear Mountain. That seems to be the closest.
User: Hmm.. sounds good
Bot: Alright! I can help you get your lift tickets now!When
will you be going?
User: Awesome! please get me a ticket for 10pax
Bot: You’ve got it. Anything else I can help you with?
User: None. Thanks again!
Bot: No problem!
```
Example of input/output for this dialog:
```
Input: dialog history = Hello how may I help you?; Is there
any good ski hills an hour’s drive from my current location?;
I’m sorry to inform you that there are no ski hills in your
immediate location
Output: user response = Can you help me find the nearest?
```

### Data Fields

Each dialogue instance has the following fields:
- `id`: a unique ID identifying the dialog. 
- `user_id`: a unique ID identifying the user. 
- `bot_id`: a unique ID identifying the bot.
- `domain`: a unique ID identifying the domain. Provides a mapping to tasks dataset.
- `task_id`: a unique ID identifying the task. Provides a mapping to tasks dataset.
- `turns`: the sequence of utterances alternating between `bot` and `user`, starting with a prompt from `bot`.
  
Each task instance has following fields:
- `task_id`: a unique ID identifying the task. 
- `domain`: a unique ID identifying the domain. 
- `bot_prompt`: The task specification for bot. 
- `bot_role`: The domain oriented role of bot. 
- `user_prompt`: The task specification for user. 
- `user_role`: The domain oriented role of user. 



### Data Splits

The dataset is split into a `train` and `test` split with the following sizes:

|                           | Training MetaLWOz     |  Evaluation MetaLWOz  | Combined |
| -----                     | ------                | -----                 | ----     |
| Total Domains             | 47                    | 4                     | 51       |
| Total Tasks               | 226                   | 14                    | 240      |
| Total Dialogs             | 37884                 | 2319                  | 40203    |

Below are the various statistics of the dataset:
 
| Statistic                     | Mean     |  Minimum   | Maximum   |
| -----                         | ------   | -----      | ----      |
| Number of tasks per domain    | 4.8      | 3          | 11        |
| Number of dialogs per domain  | 806.0    | 288        | 1990      |
| Number of dialogs per task    | 167.6    | 32         | 285       |
| Number of turns per dialog    | 11.4     | 10         | 46        |


## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators
The dataset v1 version is created by team of researchers from Microsoft Research (Montreal, Canada)

### Licensing Information

The dataset is released under [Microsoft Research Data License Agreement](https://msropendata-web-api.azurewebsites.net/licenses/2f933be3-284d-500b-7ea3-2aa2fd0f1bb2/view) 

### Citation Information

You can cite the following for the various versions of MetaLWOz:

Version 1.0
```
@InProceedings{shalyminov2020fast,
author = {Shalyminov, Igor and Sordoni, Alessandro and Atkinson, Adam and Schulz, Hannes},
title = {Fast Domain Adaptation For Goal-Oriented Dialogue Using A Hybrid Generative-Retrieval Transformer},
booktitle = {2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
year = {2020},
month = {April},
url = {https://www.microsoft.com/en-us/research/publication/fast-domain-adaptation-for-goal-oriented-dialogue-using-a
-hybrid-generative-retrieval-transformer/},
}
```

### Contributions

Thanks to [@pacman100](https://github.com/pacman100) for adding this dataset.