File size: 7,666 Bytes
ea7d319 7a198b4 ea7d319 7a198b4 3c099cb ea7d319 14aa420 be9fe62 3c099cb c906a40 3c099cb ea7d319 74a72a8 ea7d319 03d4cf5 3c099cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- other
license_details: Microsoft Research Data License Agreement
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-Open-American-National-Corpus-(OANC1)
task_categories:
- summarization
task_ids: []
pretty_name: MsrTextCompression
dataset_info:
features:
- name: source_id
dtype: string
- name: domain
dtype: string
- name: source_text
dtype: string
- name: targets
sequence:
- name: compressed_text
dtype: string
- name: judge_id
dtype: string
- name: num_ratings
dtype: int64
- name: ratings
sequence: int64
splits:
- name: train
num_bytes: 5001312
num_examples: 4936
- name: validation
num_bytes: 449691
num_examples: 447
- name: test
num_bytes: 804536
num_examples: 785
download_size: 0
dataset_size: 6255539
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://msropendata.com/datasets/f8ce2ec9-7fbd-48f7-a8bb-2d2279373563
- **Repository:**
- **Paper:** https://www.microsoft.com/en-us/research/wp-content/uploads/2016/09/Sentence_Compression_final-1.pdf
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
This dataset contains sentences and short paragraphs with corresponding shorter (compressed) versions. There are up to five compressions for each input text, together with quality judgements of their meaning preservation and grammaticality. The dataset is derived using source texts from the Open American National Corpus (ww.anc.org) and crowd-sourcing.
### Supported Tasks and Leaderboards
Text Summarization
### Languages
English
## Dataset Structure
### Data Instances
It contains approximately 6,000 source texts with multiple compressions (about 26,000 pairs of source and compressed texts), representing business letters, newswire, journals, and technical documents sampled from the Open American National Corpus (OANC1).
- Each source text is accompanied by up to five crowd-sourced rewrites constrained to a preset
compression ratio and annotated with quality judgments. Multiple rewrites permit study of the impact of operations on human compression quality and facilitate automatic evaluation.
- This dataset is the first to provide compressions at the multi-sentence (two-sentence paragraph)
level, which may present a stepping stone to whole document summarization.
- Many of these two-sentence paragraphs are compressed both as paragraphs and separately sentence-bysentence, offering data that may yield insights
into the impact of multi-sentence operations on human compression quality.
| Description | Source | Target | Average CPS | Meaning Quality | Grammar Quality |
| :------------- | :----------: | -----------: | -----------: | -----------: | -----------: |
| 1-Sentence | 3764 | 15523 | 4.12 | 2.78 | 2.81 |
| 2-Sentence | 2405 | 10900 | 4.53 | 2.78 | 2.83 |
**Note**: Average CPS = Average Compressions per Source Text
### Data Fields
```
{'domain': 'Newswire',
'source_id': '106',
'source_text': '" Except for this small vocal minority, we have just not gotten a lot of groundswell against this from members, " says APA president Philip G. Zimbardo of Stanford University.',
'targets': {'compressed_text': ['"Except for this small vocal minority, we have not gotten a lot of groundswell against this," says APA president Zimbardo.',
'"Except for a vocal minority, we haven\'t gotten much groundswell from members, " says Philip G. Zimbardo of Stanford University.',
'APA president of Stanford has stated that except for a vocal minority they have not gotten a lot of pushback from members.',
'APA president Philip G. Zimbardo of Stanford says they have not had much opposition against this.'],
'judge_id': ['2', '22', '10', '0'],
'num_ratings': [3, 3, 3, 3],
'ratings': [[6, 6, 6], [11, 6, 6], [6, 11, 6], [6, 11, 11]]}}
```
- source_id: index of article per original dataset
- source_text: uncompressed original text
- domain: source of the article
- targets:
- compressed_text: compressed version of `source_text`
- judge_id: anonymized ids of crowdworkers who proposed compression
- num_ratings: number of ratings available for each proposed compression
- ratings: see table below
Ratings system (excerpted from authors' README):
- 6 = Most important meaning Flawless language (3 on meaning and 3 on grammar as per the paper's terminology)
- 7 = Most important meaning Minor errors (3 on meaning and 2 on grammar)
- 9 = Most important meaning Disfluent or incomprehensible (3 on meaning and 1 on grammar)
- 11 = Much meaning Flawless language (2 on meaning and 3 on grammar)
- 12 = Much meaning Minor errors (2 on meaning and 2 on grammar)
- 14 = Much meaning Disfluent or incomprehensible (2 on meaning and 1 on grammar)
- 21 = Little or none meaning Flawless language (1 on meaning and 3 on grammar)
- 22 = Little or none meaning Minor errors (1 on meaning and 2 on grammar)
- 24 = Little or none meaning Disfluent or incomprehensible (1 on meaning and 1 on grammar)
See **README.txt** from data archive for additional details.
### Data Splits
There are 4,936 source texts in the training, 448 in the development, and 785 in the test set.
## Dataset Creation
### Annotations
#### Annotation process
Compressions were created using UHRS, an inhouse crowd-sourcing system similar to Amazon’s Mechanical Turk, in two annotation rounds, one for shortening and a second to rate compression quality:
1. In the first round, five workers were tasked with abridging each source text by at least 25%, while remaining grammatical and fluent, and retaining the meaning of the original.
2. In the second round, 3-5 judges (raters) were asked to evaluate the grammaticality of each compression on a scale from 1 (major errors, disfluent) through 3 (fluent), and again analogously for meaning preservation on a scale from 1 (orthogonal) through 3 (most important meaning-preserving).
## Additional Information
### Licensing Information
Microsoft Research Data License Agreement
### Citation Information
@inproceedings{Toutanova2016ADA,
title={A Dataset and Evaluation Metrics for Abstractive Compression of Sentences and Short Paragraphs},
author={Kristina Toutanova and Chris Brockett and Ke M. Tran and Saleema Amershi},
booktitle={EMNLP},
year={2016}
}
### Contributions
Thanks to [@jeromeku](https://github.com/jeromeku) for adding this dataset. |