Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
inspec / inspec.py
rajivratn's picture
Update inspec.py
1dc0337
raw
history blame
7.1 kB
import csv
import json
import os
import datasets
from typing import List, Any
# _SPLIT = ['train', 'test', 'valid']
_CITATION = """\
author: amardeep
"""
_DESCRIPTION = """\
This new dataset is designed to solve kp NLP task and is crafted with a lot of care.
"""
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
_URLS = {
"test": "test.jsonl",
# "train": "train.jsonl",
"valid": "valid.jsonl"
}
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class TestLDKP(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="extraction", version=VERSION, description="This part of my dataset covers long document"),
datasets.BuilderConfig(name="generation", version=VERSION, description="This part of my dataset covers abstract only"),
datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers abstract only"),
datasets.BuilderConfig(name="ldkp_generation", version=VERSION, description="This part of my dataset covers abstract only"),
datasets.BuilderConfig(name="ldkp_extraction", version=VERSION, description="This part of my dataset covers abstract only"),
]
DEFAULT_CONFIG_NAME = "extraction"
def _info(self):
if self.config.name == "extraction" or self.config.name == "ldkp_extraction": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"id": datasets.Value("int64"),
"document": datasets.features.Sequence(datasets.Value("string")),
"BIO_tags": datasets.features.Sequence(datasets.Value("string"))
}
elif self.config.name == "generation" or self.config.name == "ldkp_generation":
features = datasets.Features(
{
"id": datasets.Value("int64"),
"document": datasets.features.Sequence(datasets.Value("string")),
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string"))
}
)
else:
features = datasets.Features(
{
"id": datasets.Value("int64"),
"document": datasets.features.Sequence(datasets.Value("string")),
"document_tags": datasets.features.Sequence(datasets.Value("string")),
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
"other_metadata": datasets.features.Sequence(
{
"text": datasets.features.Sequence(datasets.Value("string")),
"tags":datasets.features.Sequence(datasets.Value("string"))
}
)
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLS)
return [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": data_dir['train'],
# "split": "train",
# },
# ),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['test'],
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir['valid'],
"split": "valid",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "extraction":
# Yields examples as (key, example) tuples
yield key, {
"id": data['paper_id']
"document": data["document"],
"BIO_tags": data["document_tags"]
}
elif self.config.name == "ldkp_extraction":
yield key, {
"id": data['paper_id']
"document": data["document"]+data["other_metadata"]['text'],
"BIO_tags": data["document_tags"] + data["other_metadata"]['tags']
}
elif self.config.name == "ldkp_generation":
yield key, {
"id": data['paper_id']
"document": data["document"]+data["other_metadata"]['text'],
"extractive_keyphrases": data["extractive_keyphrases"],
"abstractive_keyphrases": data["abstractive_keyphrases"]
}
elif self.config.name == "generation":
yield key, {
"id": data['paper_id']
"document": data["document"],
"extractive_keyphrases": data["extractive_keyphrases"],
"abstractive_keyphrases": data["abstractive_keyphrases"]
}
else:
yield key, {
"id": data['paper_id']
"document": data["document"],
"document_tags": data["document_tags"],
"extractive_keyphrases": data["extractive_keyphrases"],
"abstractive_keyphrases": data["abstractive_keyphrases"],
"other_metadata": data["other_metadata"]
}