Datasets:

Modalities:
Text
Libraries:
Datasets
dibyaaaaax commited on
Commit
410276e
1 Parent(s): 7529919

Delete kptimes.py

Browse files
Files changed (1) hide show
  1. kptimes.py +0 -148
kptimes.py DELETED
@@ -1,148 +0,0 @@
1
- import json
2
- import datasets
3
-
4
- # _SPLIT = ['train', 'test', 'valid']
5
- _CITATION = """\
6
- """
7
-
8
- _DESCRIPTION = """\
9
-
10
- """
11
-
12
- _HOMEPAGE = ""
13
-
14
- # TODO: Add the licence for the dataset here if you can find it
15
- _LICENSE = ""
16
-
17
- # TODO: Add link to the official dataset URLs here
18
-
19
- _URLS = {
20
- "test": "test.jsonl",
21
- "train": "train.jsonl",
22
- "valid": "valid.jsonl"
23
- }
24
-
25
-
26
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
27
- class Inspec(datasets.GeneratorBasedBuilder):
28
- """TODO: Short description of my dataset."""
29
-
30
- VERSION = datasets.Version("0.0.1")
31
-
32
- BUILDER_CONFIGS = [
33
- datasets.BuilderConfig(name="extraction", version=VERSION,
34
- description="This part of my dataset covers extraction"),
35
- datasets.BuilderConfig(name="generation", version=VERSION,
36
- description="This part of my dataset covers generation"),
37
- datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers the raw data"),
38
- ]
39
-
40
- DEFAULT_CONFIG_NAME = "extraction"
41
-
42
- def _info(self):
43
- if self.config.name == "extraction": # This is the name of the configuration selected in BUILDER_CONFIGS above
44
- features = datasets.Features(
45
- {
46
- "id": datasets.Value("int64"),
47
- "document": datasets.features.Sequence(datasets.Value("string")),
48
- "doc_bio_tags": datasets.features.Sequence(datasets.Value("string"))
49
-
50
- }
51
- )
52
- elif self.config.name == "generation":
53
- features = datasets.Features(
54
- {
55
- "id": datasets.Value("int64"),
56
- "document": datasets.features.Sequence(datasets.Value("string")),
57
- "extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
58
- "abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string"))
59
-
60
- }
61
- )
62
- else:
63
- features = datasets.Features(
64
- {
65
- "id": datasets.Value("int64"),
66
- "document": datasets.features.Sequence(datasets.Value("string")),
67
- "doc_bio_tags": datasets.features.Sequence(datasets.Value("string")),
68
- "extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
69
- "abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
70
- "other_metadata": datasets.features.Sequence(
71
- {
72
- "text": datasets.features.Sequence(datasets.Value("string")),
73
- "bio_tags": datasets.features.Sequence(datasets.Value("string"))
74
- }
75
- )
76
-
77
- }
78
- )
79
- return datasets.DatasetInfo(
80
- # This is the description that will appear on the datasets page.
81
- description=_DESCRIPTION,
82
- # This defines the different columns of the dataset and their types
83
- features=features,
84
- homepage=_HOMEPAGE,
85
- # License for the dataset if available
86
- license=_LICENSE,
87
- # Citation for the dataset
88
- citation=_CITATION,
89
- )
90
-
91
- def _split_generators(self, dl_manager):
92
-
93
- data_dir = dl_manager.download_and_extract(_URLS)
94
- return [
95
- datasets.SplitGenerator(
96
- name=datasets.Split.TRAIN,
97
- # These kwargs will be passed to _generate_examples
98
- gen_kwargs={
99
- "filepath": data_dir['train'],
100
- "split": "train",
101
- },
102
- ),
103
- datasets.SplitGenerator(
104
- name=datasets.Split.TEST,
105
- # These kwargs will be passed to _generate_examples
106
- gen_kwargs={
107
- "filepath": data_dir['test'],
108
- "split": "test"
109
- },
110
- ),
111
- datasets.SplitGenerator(
112
- name=datasets.Split.VALIDATION,
113
- # These kwargs will be passed to _generate_examples
114
- gen_kwargs={
115
- "filepath": data_dir['valid'],
116
- "split": "valid",
117
- },
118
- ),
119
- ]
120
-
121
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
122
- def _generate_examples(self, filepath, split):
123
- with open(filepath, encoding="utf-8") as f:
124
- for key, row in enumerate(f):
125
- data = json.loads(row)
126
- if self.config.name == "extraction":
127
- # Yields examples as (key, example) tuples
128
- yield key, {
129
- "id": data['paper_id'],
130
- "document": data["document"],
131
- "doc_bio_tags": data.get("doc_bio_tags")
132
- }
133
- elif self.config.name == "generation":
134
- yield key, {
135
- "id": data['paper_id'],
136
- "document": data["document"],
137
- "extractive_keyphrases": data.get("extractive_keyphrases"),
138
- "abstractive_keyphrases": data.get("abstractive_keyphrases")
139
- }
140
- else:
141
- yield key, {
142
- "id": data['paper_id'],
143
- "document": data["document"],
144
- "doc_bio_tags": data.get("doc_bio_tags"),
145
- "extractive_keyphrases": data.get("extractive_keyphrases"),
146
- "abstractive_keyphrases": data.get("abstractive_keyphrases"),
147
- "other_metadata": data["other_metadata"]
148
- }