|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{gautam2020metooma, |
|
title={# MeTooMA: Multi-Aspect Annotations of Tweets Related to the MeToo Movement}, |
|
author={Gautam, Akash and Mathur, Puneet and Gosangi, Rakesh and Mahata, Debanjan and Sawhney, Ramit and Shah, Rajiv Ratn}, |
|
booktitle={Proceedings of the International AAAI Conference on Web and Social Media}, |
|
volume={14}, |
|
pages={209--216}, |
|
year={2020} } |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset consists of tweets belonging to #MeToo movement on Twitter, labelled into different categories. |
|
Due to Twitter's development policies, we only provide the tweet ID's and corresponding labels, |
|
other data can be fetched via Twitter API. |
|
The data has been labelled by experts, with the majority taken into the account for deciding the final label. |
|
We provide these labels for each of the tweets. The labels provided for each data point |
|
includes -- Relevance, Directed Hate, Generalized Hate, |
|
Sarcasm, Allegation, Justification, Refutation, Support, Oppose |
|
""" |
|
|
|
|
|
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/akash418/public-data-repo/main/MeTooMMD_train.csv" |
|
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/akash418/public-data-repo/main/MeTooMMD_test.csv" |
|
|
|
|
|
class Metooma(datasets.GeneratorBasedBuilder): |
|
"""Metooma dataset -- Dataset providing labeled information for tweets belonging to the MeToo movement""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
|
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"TweetId": datasets.Value("string"), |
|
"Text_Only_Informative": datasets.ClassLabel(names=["Text Non Informative", "Text Informative"]), |
|
"Image_Only_Informative": datasets.ClassLabel( |
|
names=["Image Non Informative", "Image Informative"] |
|
), |
|
"Directed_Hate": datasets.ClassLabel(names=["Directed Hate Absent", "Directed Hate Present"]), |
|
"Generalized_Hate": datasets.ClassLabel( |
|
names=["Generalized Hate Absent", "Generalized Hate Present"] |
|
), |
|
"Sarcasm": datasets.ClassLabel(names=["Sarcasm Absent", "Sarcasm Present"]), |
|
"Allegation": datasets.ClassLabel(names=["Allegation Absent", "Allegation Present"]), |
|
"Justification": datasets.ClassLabel(names=["Justification Absent", "Justification Present"]), |
|
"Refutation": datasets.ClassLabel(names=["Refutation Absent", "Refutation Present"]), |
|
"Support": datasets.ClassLabel(names=["Support Absent", "Support Present"]), |
|
"Oppose": datasets.ClassLabel(names=["Oppose Absent", "Oppose Present"]), |
|
} |
|
), |
|
supervised_keys=None, |
|
|
|
homepage="https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/JN4EYU", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) |
|
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, |
|
quotechar='"', |
|
delimiter=",", |
|
quoting=csv.QUOTE_ALL, |
|
skipinitialspace=True, |
|
) |
|
for id_, row in enumerate(csv_reader): |
|
( |
|
tweet_id, |
|
text_informative_label, |
|
image_informative_label, |
|
dir_hate_label, |
|
gen_hate_label, |
|
sarcasm_label, |
|
allegtation_label, |
|
justification_label, |
|
refutation_label, |
|
support_label, |
|
oppose_label, |
|
) = row |
|
|
|
yield id_, { |
|
"TweetId": tweet_id, |
|
"Text_Only_Informative": int(text_informative_label), |
|
"Image_Only_Informative": int(image_informative_label), |
|
"Directed_Hate": int(dir_hate_label), |
|
"Generalized_Hate": int(gen_hate_label), |
|
"Sarcasm": int(sarcasm_label), |
|
"Allegation": int(allegtation_label), |
|
"Justification": int(justification_label), |
|
"Refutation": int(refutation_label), |
|
"Support": int(support_label), |
|
"Oppose": int(oppose_label), |
|
} |
|
|