The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    UnicodeDecodeError
Message:      'utf-8' codec can't decode byte 0x93 in position 0: invalid start byte
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1995, in _prepare_split_single
                  for _, table in generator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/csv/csv.py", line 193, in _generate_tables
                  csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.pd_read_csv_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/streaming.py", line 75, in wrapper
                  return function(*args, download_config=download_config, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 1491, in xpandas_read_csv
                  return pd.read_csv(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1026, in read_csv
                  return _read(filepath_or_buffer, kwds)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 620, in _read
                  parser = TextFileReader(filepath_or_buffer, **kwds)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1620, in __init__
                  self._engine = self._make_engine(f, self.engine)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/readers.py", line 1898, in _make_engine
                  return mapping[engine](f, **self.options)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/parsers/c_parser_wrapper.py", line 93, in __init__
                  self._reader = parsers.TextReader(src, **kwds)
                File "parsers.pyx", line 574, in pandas._libs.parsers.TextReader.__cinit__
                File "parsers.pyx", line 663, in pandas._libs.parsers.TextReader._get_header
                File "parsers.pyx", line 874, in pandas._libs.parsers.TextReader._tokenize_rows
                File "parsers.pyx", line 891, in pandas._libs.parsers.TextReader._check_tokenize_status
                File "parsers.pyx", line 2053, in pandas._libs.parsers.raise_parser_error
              UnicodeDecodeError: 'utf-8' codec can't decode byte 0x93 in position 0: invalid start byte
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

date
string
HUFL
float64
HULL
float64
MUFL
float64
MULL
float64
LUFL
float64
LULL
float64
OT
float64
2016/7/1 00:00
5.827
2.009
1.599
0.462
4.203
1.34
30.531
2016/7/1 01:00
5.693
2.076
1.492
0.426
4.142
1.371
27.787001
2016/7/1 02:00
5.157
1.741
1.279
0.355
3.777
1.218
27.787001
2016/7/1 03:00
5.09
1.942
1.279
0.391
3.807
1.279
25.044001
2016/7/1 04:00
5.358
1.942
1.492
0.462
3.868
1.279
21.948
2016/7/1 05:00
5.626
2.143
1.528
0.533
4.051
1.371
21.174
2016/7/1 06:00
7.167
2.947
2.132
0.782
5.026
1.858
22.792
2016/7/1 07:00
7.435
3.282
2.31
1.031
5.087
2.224
23.143999
2016/7/1 08:00
5.559
3.014
2.452
1.173
2.955
1.432
21.667
2016/7/1 09:00
4.555
2.545
1.919
0.817
2.68
1.371
17.445999
2016/7/1 10:00
4.957
2.545
1.99
0.853
2.955
1.492
19.979
2016/7/1 11:00
5.76
2.545
2.203
0.853
3.442
1.492
20.118999
2016/7/1 12:00
4.689
2.545
1.812
0.853
2.833
1.523
19.205
2016/7/1 13:00
4.689
2.679
1.777
1.244
3.107
1.614
18.572001
2016/7/1 14:00
5.09
2.947
2.452
1.35
2.559
1.432
19.556
2016/7/1 15:00
5.09
3.148
2.487
1.35
2.589
1.523
17.305
2016/7/1 16:00
4.22
2.411
1.706
0.782
2.619
1.492
19.486
2016/7/1 17:00
4.756
2.344
1.635
0.711
3.076
1.492
19.134001
2016/7/1 18:00
5.626
2.88
2.523
1.208
3.076
1.492
20.681999
2016/7/1 19:00
5.492
3.014
2.452
1.208
3.015
1.553
18.712
2016/7/1 20:00
5.358
3.014
2.452
1.208
2.863
1.523
17.868
2016/7/1 21:00
5.09
2.947
2.381
1.208
2.68
1.523
18.009001
2016/7/1 22:00
4.823
2.947
2.203
1.173
2.619
1.523
18.009001
2016/7/1 23:00
4.622
2.88
2.132
1.137
2.467
1.492
19.768
2016/7/2 00:00
5.224
3.081
2.701
1.315
2.437
1.523
21.104
2016/7/2 01:00
5.157
3.014
2.878
1.35
2.345
1.432
19.697001
2016/7/2 02:00
5.157
3.148
2.878
1.492
2.284
1.432
20.049
2016/7/2 03:00
5.157
3.081
2.914
1.492
2.193
1.401
20.752001
2016/7/2 04:00
4.555
3.081
2.452
1.492
2.193
1.401
21.385
2016/7/2 05:00
5.425
3.282
3.092
1.706
2.437
1.462
22.23
2016/7/2 06:00
5.492
3.282
2.523
1.492
2.985
1.462
20.26
2016/7/2 07:00
5.626
3.215
2.487
1.492
3.076
1.523
21.104
2016/7/2 08:00
5.559
3.282
2.594
1.67
2.924
1.523
20.612
2016/7/2 09:00
5.224
3.215
2.559
1.564
2.68
1.462
18.361
2016/7/2 10:00
9.913
4.957
6.645
3.305
3.046
1.553
20.962999
2016/7/2 11:00
11.788
5.425
8.173
2.523
3.686
1.675
19.416
2016/7/2 12:00
9.645
4.957
6.752
2.132
3.107
1.828
20.823
2016/7/2 13:00
10.382
5.76
7.462
2.559
2.985
1.767
20.190001
2016/7/2 14:00
8.774
4.689
6.112
2.025
2.894
1.919
21.315001
2016/7/2 15:00
10.449
5.157
6.965
2.452
2.772
1.736
22.018999
2016/7/2 16:00
9.846
4.823
7.036
2.665
2.894
1.767
20.681999
2016/7/2 17:00
9.913
4.823
6.894
2.416
3.229
1.736
25.466
2016/7/2 18:00
10.65
4.689
6.929
2.452
3.381
1.797
25.888
2016/7/2 19:00
10.114
4.354
6.645
1.812
3.107
1.736
27.857
2016/7/2 20:00
9.98
4.153
6.574
1.954
3.411
1.767
27.295
2016/7/2 21:00
9.31
4.22
6.005
2.132
3.229
1.858
22.23
2016/7/2 22:00
9.444
4.622
6.965
2.168
2.955
1.858
21.948
2016/7/2 23:00
9.444
4.287
6.823
2.559
2.589
1.736
27.295
2016/7/3 00:00
10.382
5.425
7.604
2.31
2.955
1.675
29.334999
2016/7/3 01:00
9.779
5.224
6.716
2.843
2.65
1.675
26.028
2016/7/3 02:00
10.382
4.689
7.32
2.203
2.985
1.858
24.34
2016/7/3 03:00
9.779
4.153
6.823
1.99
2.528
1.675
26.450001
2016/7/3 04:00
10.717
4.756
7.356
2.807
2.65
1.797
25.958
2016/7/3 05:00
10.315
4.689
7.391
2.452
2.924
1.858
24.059
2016/7/3 06:00
12.592
5.224
8.671
2.203
3.716
1.949
25.325001
2016/7/3 07:00
11.119
4.622
7.889
2.843
3.625
1.919
23.636999
2016/7/3 08:00
10.65
4.421
7.036
2.025
3.594
1.919
26.379999
2016/7/3 09:00
10.047
4.22
6.432
1.67
3.686
1.949
27.365
2016/7/3 10:00
11.721
5.09
7.889
2.559
3.564
1.858
28.068001
2016/7/3 11:00
12.123
5.358
8.066
2.487
4.082
1.919
29.475
2016/7/3 12:00
9.98
5.023
6.858
2.559
3.29
1.858
26.802
2016/7/3 13:00
9.243
4.957
6.29
2.63
3.137
1.888
29.968
2016/7/3 14:00
10.181
5.425
7.178
3.02
3.076
1.888
30.389999
2016/7/3 15:00
9.645
5.425
7.107
2.665
3.015
1.828
31.164
2016/7/3 16:00
9.779
4.89
6.503
2.985
3.076
2.01
29.757
2016/7/3 17:00
11.119
5.157
7.32
2.914
3.807
1.98
32.289001
2016/7/3 18:00
11.052
4.957
7.391
2.523
3.686
1.98
31.938
2016/7/3 19:00
10.784
4.89
7.214
2.487
3.594
1.888
28.561001
2016/7/3 20:00
11.186
4.89
7.178
2.345
3.96
1.919
21.525999
2016/7/3 21:00
10.449
4.89
6.61
2.31
3.807
2.041
22.23
2016/7/3 22:00
9.578
5.76
6.787
3.127
3.259
1.888
19.416
2016/7/3 23:00
9.31
5.76
6.61
3.056
3.168
1.888
18.572001
2016/7/4 00:00
9.913
5.894
6.254
2.63
3.015
1.858
21.667
2016/7/4 01:00
8.975
4.957
6.29
2.665
2.863
1.828
25.535999
2016/7/4 02:00
8.64
4.823
6.148
2.594
2.924
1.828
27.857
2016/7/4 03:00
9.176
5.492
5.579
2.381
2.863
1.858
27.928
2016/7/4 04:00
9.109
4.823
5.65
2.523
2.772
1.797
24.621
2016/7/4 05:00
9.846
5.559
5.97
2.949
3.107
1.888
23.848
2016/7/4 06:00
11.588
5.425
7.391
2.807
3.807
1.98
23.073999
2016/7/4 07:00
11.788
6.095
7.214
2.985
3.899
2.041
22.511
2016/7/4 08:00
10.583
5.961
7.143
2.914
3.655
2.071
21.667
2016/7/4 09:00
11.588
6.296
7.569
3.056
3.472
2.01
25.395
2016/7/4 10:00
11.922
6.229
7.711
3.056
3.746
1.949
25.184
2016/7/4 11:00
12.324
5.559
8.422
3.234
4.203
1.98
29.546
2016/7/4 12:00
10.382
5.894
6.858
2.63
3.564
1.949
29.475
2016/7/4 13:00
10.047
5.425
6.752
3.02
3.32
1.949
29.264
2016/7/4 14:00
10.516
6.028
7.107
3.376
3.137
1.919
30.952999
2016/7/4 15:00
10.717
6.095
6.787
3.02
3.168
2.01
31.726
2016/7/4 16:00
9.98
5.023
6.503
2.559
3.442
2.041
33.132999
2016/7/4 17:00
11.32
5.09
7.356
2.452
3.868
2.041
28.983
2016/7/4 18:00
11.387
4.957
7.356
2.452
4.295
2.193
28.983
2016/7/4 19:00
9.377
3.885
6.894
2.239
2.467
1.188
31.726
2016/7/4 20:00
10.114
4.086
7.143
2.239
2.955
1.462
25.184
2016/7/4 21:00
10.382
4.823
6.894
2.31
3.503
2.01
30.531
2016/7/4 22:00
9.645
4.89
6.61
1.919
3.259
1.919
27.646
2016/7/4 23:00
12.726
6.497
9.346
3.482
3.168
1.98
25.466
2016/7/5 00:00
11.989
5.626
8.777
2.949
3.198
1.98
25.958
2016/7/5 01:00
12.525
6.296
8.955
3.163
3.137
2.01
25.958
2016/7/5 02:00
12.324
6.296
8.813
3.376
2.985
1.919
26.028
2016/7/5 03:00
10.717
5.425
8.066
2.878
2.833
1.858
28.913
End of preview.