Commit
·
43d46be
0
Parent(s):
Update files from the datasets library (from 1.2.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.2.0
- .gitattributes +27 -0
- README.md +153 -0
- dataset_infos.json +1 -0
- deal_or_no_dialog.py +165 -0
- dummy/dialogues/1.1.0/dummy_data.zip +3 -0
- dummy/self_play/1.1.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- crowdsourced
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- cc-by-4-0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 10K<n<100K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- conditional-text-generation
|
18 |
+
task_ids:
|
19 |
+
- conditional-text-generation-other-dialogue-generation
|
20 |
+
---
|
21 |
+
|
22 |
+
|
23 |
+
# Dataset Card for Deal or No Deal Negotiator
|
24 |
+
|
25 |
+
## Table of Contents
|
26 |
+
- [Dataset Description](#dataset-description)
|
27 |
+
- [Dataset Summary](#dataset-summary)
|
28 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
29 |
+
- [Languages](#languages)
|
30 |
+
- [Dataset Structure](#dataset-structure)
|
31 |
+
- [Data Instances](#data-instances)
|
32 |
+
- [Data Fields](#data-instances)
|
33 |
+
- [Data Splits](#data-instances)
|
34 |
+
- [Dataset Creation](#dataset-creation)
|
35 |
+
- [Curation Rationale](#curation-rationale)
|
36 |
+
- [Source Data](#source-data)
|
37 |
+
- [Annotations](#annotations)
|
38 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
39 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
40 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
41 |
+
- [Discussion of Biases](#discussion-of-biases)
|
42 |
+
- [Other Known Limitations](#other-known-limitations)
|
43 |
+
- [Additional Information](#additional-information)
|
44 |
+
- [Dataset Curators](#dataset-curators)
|
45 |
+
- [Licensing Information](#licensing-information)
|
46 |
+
- [Citation Information](#citation-information)
|
47 |
+
|
48 |
+
## Dataset Description
|
49 |
+
|
50 |
+
- **Repository:** [Dataset Repository](https://github.com/facebookresearch/end-to-end-negotiator)
|
51 |
+
- **Paper:** [Deal or No Deal? End-to-End Learning for Negotiation Dialogues](https://arxiv.org/abs/1706.05125)
|
52 |
+
|
53 |
+
### Dataset Summary
|
54 |
+
|
55 |
+
A large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each other’s reward functions must reach an agreement (or a deal) via natural language dialogue.
|
56 |
+
|
57 |
+
### Supported Tasks and Leaderboards
|
58 |
+
|
59 |
+
Train end-to-end models for negotiation
|
60 |
+
|
61 |
+
### Languages
|
62 |
+
|
63 |
+
The text in the dataset is in English
|
64 |
+
|
65 |
+
## Dataset Structure
|
66 |
+
|
67 |
+
### Data Instances
|
68 |
+
|
69 |
+
{'dialogue': 'YOU: i love basketball and reading <eos> THEM: no . i want the hat and the balls <eos> YOU: both balls ? <eos> THEM: yeah or 1 ball and 1 book <eos> YOU: ok i want the hat and you can have the rest <eos> THEM: okay deal ill take the books and the balls you can have only the hat <eos> YOU: ok <eos> THEM: <selection>',
|
70 |
+
'input': {'count': [3, 1, 2], 'value': [0, 8, 1]},
|
71 |
+
'output': 'item0=0 item1=1 item2=0 item0=3 item1=0 item2=2',
|
72 |
+
'partner_input': {'count': [3, 1, 2], 'value': [1, 3, 2]}}
|
73 |
+
|
74 |
+
### Data Fields
|
75 |
+
|
76 |
+
`dialogue`: The dialogue between the agents. \
|
77 |
+
`input`: The input of the firt agent. \
|
78 |
+
`partner_input`: The input of the other agent. \
|
79 |
+
`count`: The count of the three available items. \
|
80 |
+
`value`: The value of the three available items. \
|
81 |
+
`output`: Describes how many of each of the three item typesare assigned to each agent
|
82 |
+
|
83 |
+
|
84 |
+
### Data Splits
|
85 |
+
|
86 |
+
| | Tain | Valid | Test |
|
87 |
+
| ----- | ------ | ----- | ---- |
|
88 |
+
| dialogues | 10095 | 1087 | 1052 |
|
89 |
+
| self_play | 8172 | NA | NA |
|
90 |
+
|
91 |
+
## Dataset Creation
|
92 |
+
|
93 |
+
### Curation Rationale
|
94 |
+
|
95 |
+
[More Information Needed]
|
96 |
+
|
97 |
+
### Source Data
|
98 |
+
|
99 |
+
#### Initial Data Collection and Normalization
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
#### Who are the source language producers?
|
104 |
+
|
105 |
+
[More Information Needed]
|
106 |
+
|
107 |
+
### Annotations
|
108 |
+
|
109 |
+
#### Annotation process
|
110 |
+
|
111 |
+
[More Information Needed]
|
112 |
+
|
113 |
+
#### Who are the annotators?
|
114 |
+
|
115 |
+
Human workers using Amazon Mechanical Turk. They were paid $0.15 per dialogue, with a $0.05 bonus for maximal scores. Only workers based in the United States with a 95% approval rating and at least 5000 previous HITs were used.
|
116 |
+
|
117 |
+
### Personal and Sensitive Information
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
## Considerations for Using the Data
|
122 |
+
|
123 |
+
### Social Impact of Dataset
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Discussion of Biases
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
### Other Known Limitations
|
132 |
+
|
133 |
+
[More Information Needed]
|
134 |
+
|
135 |
+
## Additional Information
|
136 |
+
|
137 |
+
### Dataset Curators
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
### Licensing Information
|
142 |
+
|
143 |
+
The project is licenced under CC-by-NC
|
144 |
+
|
145 |
+
### Citation Information
|
146 |
+
```
|
147 |
+
@article{lewis2017deal,
|
148 |
+
title={Deal or no deal? end-to-end learning for negotiation dialogues},
|
149 |
+
author={Lewis, Mike and Yarats, Denis and Dauphin, Yann N and Parikh, Devi and Batra, Dhruv},
|
150 |
+
journal={arXiv preprint arXiv:1706.05125},
|
151 |
+
year={2017}
|
152 |
+
}
|
153 |
+
```
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"dialogues": {"description": "A large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each other\u2019s reward functions must reach anagreement (o a deal) via natural language dialogue.\n", "citation": "@article{lewis2017deal,\n title={Deal or no deal? end-to-end learning for negotiation dialogues},\n author={Lewis, Mike and Yarats, Denis and Dauphin, Yann N and Parikh, Devi and Batra, Dhruv},\n journal={arXiv preprint arXiv:1706.05125},\n year={2017}\n}\n", "homepage": "https://github.com/facebookresearch/end-to-end-negotiator", "license": "The project is licenced under CC-by-NC", "features": {"input": {"feature": {"count": {"dtype": "int32", "id": null, "_type": "Value"}, "value": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "dialogue": {"dtype": "string", "id": null, "_type": "Value"}, "output": {"dtype": "string", "id": null, "_type": "Value"}, "partner_input": {"feature": {"count": {"dtype": "int32", "id": null, "_type": "Value"}, "value": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "deal_or_no_dialog", "config_name": "dialogues", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3860624, "num_examples": 10095, "dataset_name": "deal_or_no_dialog"}, "test": {"name": "test", "num_bytes": 396258, "num_examples": 1052, "dataset_name": "deal_or_no_dialog"}, "validation": {"name": "validation", "num_bytes": 418491, "num_examples": 1087, "dataset_name": "deal_or_no_dialog"}}, "download_checksums": {"https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/train.txt": {"num_bytes": 4325861, "checksum": "aa278f06765463a5767055e1a544d922b39a9bb78f586f85513bf99f74aa2300"}, "https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/test.txt": {"num_bytes": 444703, "checksum": "37be3150bf656195b61a7547b45cf307acce929f2a8140036890a561c3597c83"}, "https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/val.txt": {"num_bytes": 468508, "checksum": "5ad7df00b8bc4b1fff565cb4dc38b23afc7874c496b0ed2e1c58c232326ff996"}}, "download_size": 5239072, "post_processing_size": null, "dataset_size": 4675373, "size_in_bytes": 9914445}, "self_play": {"description": "A large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each other\u2019s reward functions must reach anagreement (o a deal) via natural language dialogue.\n", "citation": "@article{lewis2017deal,\n title={Deal or no deal? end-to-end learning for negotiation dialogues},\n author={Lewis, Mike and Yarats, Denis and Dauphin, Yann N and Parikh, Devi and Batra, Dhruv},\n journal={arXiv preprint arXiv:1706.05125},\n year={2017}\n}\n", "homepage": "https://github.com/facebookresearch/end-to-end-negotiator", "license": "The project is licenced under CC-by-NC", "features": {"input": {"feature": {"count": {"dtype": "int32", "id": null, "_type": "Value"}, "value": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "deal_or_no_dialog", "config_name": "self_play", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 261512, "num_examples": 8172, "dataset_name": "deal_or_no_dialog"}}, "download_checksums": {"https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/selfplay.txt": {"num_bytes": 98304, "checksum": "05b7d66c309617f0f1a5562ab8c1d2de933e712a4c8419fd924f4a2c899ab3aa"}}, "download_size": 98304, "post_processing_size": null, "dataset_size": 261512, "size_in_bytes": 359816}}
|
deal_or_no_dialog.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Deal or no deal negotiator"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
_CITATION = """\
|
23 |
+
@article{lewis2017deal,
|
24 |
+
title={Deal or no deal? end-to-end learning for negotiation dialogues},
|
25 |
+
author={Lewis, Mike and Yarats, Denis and Dauphin, Yann N and Parikh, Devi and Batra, Dhruv},
|
26 |
+
journal={arXiv preprint arXiv:1706.05125},
|
27 |
+
year={2017}
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
A large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each other’s reward functions must reach anagreement (o a deal) via natural language dialogue.
|
33 |
+
"""
|
34 |
+
|
35 |
+
_HOMEPAGE = "https://github.com/facebookresearch/end-to-end-negotiator"
|
36 |
+
|
37 |
+
_LICENSE = "The project is licenced under CC-by-NC"
|
38 |
+
|
39 |
+
_URLs = {
|
40 |
+
"train": "https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/train.txt",
|
41 |
+
"test": "https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/test.txt",
|
42 |
+
"val": "https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/val.txt",
|
43 |
+
"selfplay": "https://raw.githubusercontent.com/facebookresearch/end-to-end-negotiator/master/src/data/negotiate/selfplay.txt",
|
44 |
+
}
|
45 |
+
|
46 |
+
|
47 |
+
class DealOrNoDialog(datasets.GeneratorBasedBuilder):
|
48 |
+
"""Deal or no deal negotiator"""
|
49 |
+
|
50 |
+
VERSION = datasets.Version("1.1.0")
|
51 |
+
|
52 |
+
BUILDER_CONFIGS = [
|
53 |
+
datasets.BuilderConfig(
|
54 |
+
name="dialogues",
|
55 |
+
description="Consists of 5808 dialogues, based on 2236 unique scenarios.",
|
56 |
+
version=VERSION,
|
57 |
+
),
|
58 |
+
datasets.BuilderConfig(
|
59 |
+
name="self_play", description="Count and values with no dialogues. Used for self playing.", version=VERSION
|
60 |
+
),
|
61 |
+
]
|
62 |
+
|
63 |
+
DEFAULT_CONFIG_NAME = "dialogues"
|
64 |
+
|
65 |
+
def _info(self):
|
66 |
+
if self.config.name == "dialogues":
|
67 |
+
features = datasets.Features(
|
68 |
+
{
|
69 |
+
"input": datasets.Sequence({"count": datasets.Value("int32"), "value": datasets.Value("int32")}),
|
70 |
+
"dialogue": datasets.Value("string"),
|
71 |
+
"output": datasets.Value("string"),
|
72 |
+
"partner_input": datasets.Sequence(
|
73 |
+
{"count": datasets.Value("int32"), "value": datasets.Value("int32")}
|
74 |
+
),
|
75 |
+
}
|
76 |
+
)
|
77 |
+
else: # self_play
|
78 |
+
features = datasets.Features(
|
79 |
+
{
|
80 |
+
"input": datasets.Sequence({"count": datasets.Value("int32"), "value": datasets.Value("int32")}),
|
81 |
+
}
|
82 |
+
)
|
83 |
+
return datasets.DatasetInfo(
|
84 |
+
description=_DESCRIPTION,
|
85 |
+
features=features,
|
86 |
+
supervised_keys=None,
|
87 |
+
homepage=_HOMEPAGE,
|
88 |
+
license=_LICENSE,
|
89 |
+
citation=_CITATION,
|
90 |
+
)
|
91 |
+
|
92 |
+
def _split_generators(self, dl_manager):
|
93 |
+
"""Returns SplitGenerators."""
|
94 |
+
if self.config.name == "dialogues":
|
95 |
+
path_train = dl_manager.download_and_extract(_URLs["train"])
|
96 |
+
path_test = dl_manager.download_and_extract(_URLs["test"])
|
97 |
+
path_val = dl_manager.download_and_extract(_URLs["val"])
|
98 |
+
|
99 |
+
return [
|
100 |
+
datasets.SplitGenerator(
|
101 |
+
name=datasets.Split.TRAIN,
|
102 |
+
gen_kwargs={
|
103 |
+
"filepath": path_train,
|
104 |
+
"split": "train",
|
105 |
+
},
|
106 |
+
),
|
107 |
+
datasets.SplitGenerator(
|
108 |
+
name=datasets.Split.TEST,
|
109 |
+
gen_kwargs={"filepath": path_test, "split": "test"},
|
110 |
+
),
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.VALIDATION,
|
113 |
+
gen_kwargs={
|
114 |
+
"filepath": path_val,
|
115 |
+
"split": "val",
|
116 |
+
},
|
117 |
+
),
|
118 |
+
]
|
119 |
+
|
120 |
+
else:
|
121 |
+
path = dl_manager.download_and_extract(_URLs["selfplay"])
|
122 |
+
return [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TRAIN,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepath": path,
|
127 |
+
"split": "train",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
]
|
131 |
+
|
132 |
+
def _generate_examples(self, filepath, split="train"):
|
133 |
+
""" Yields examples. """
|
134 |
+
if self.config.name == "dialogues":
|
135 |
+
with open(filepath, encoding="utf-8") as f:
|
136 |
+
for idx, line in enumerate(f):
|
137 |
+
tokens = line.split()
|
138 |
+
|
139 |
+
yield idx, {
|
140 |
+
"input": {
|
141 |
+
"count": get_count_value(get_tag(tokens, "input"))[0],
|
142 |
+
"value": get_count_value(get_tag(tokens, "input"))[1],
|
143 |
+
},
|
144 |
+
"dialogue": get_tag(tokens, "dialogue"),
|
145 |
+
"output": get_tag(tokens, "output"),
|
146 |
+
"partner_input": {
|
147 |
+
"count": get_count_value(get_tag(tokens, "partner_input"))[0],
|
148 |
+
"value": get_count_value(get_tag(tokens, "partner_input"))[1],
|
149 |
+
},
|
150 |
+
}
|
151 |
+
|
152 |
+
else:
|
153 |
+
with open(filepath, encoding="utf-8") as f:
|
154 |
+
for idx, line in enumerate(f):
|
155 |
+
yield idx, {"input": {"count": get_count_value(line)[0], "value": get_count_value(line)[1]}}
|
156 |
+
|
157 |
+
|
158 |
+
def get_tag(tokens, tag):
|
159 |
+
return " ".join(tokens[tokens.index("<" + tag + ">") + 1 : tokens.index("</" + tag + ">")])
|
160 |
+
|
161 |
+
|
162 |
+
def get_count_value(sequence):
|
163 |
+
seq_list = [int(el) for el in sequence.split()]
|
164 |
+
assert len(seq_list) == 6
|
165 |
+
return [seq_list[idx] for idx in [0, 2, 4]], [seq_list[idx] for idx in [1, 3, 5]]
|
dummy/dialogues/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e1f5b98dbac1694fdc4a496b6bb23fb843a1d3bebc9a2adcf46ab0438094f17
|
3 |
+
size 1956
|
dummy/self_play/1.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48085d0881cceeb8528e29b82a779c6ab78a7211765b2beae62df62afb2251a5
|
3 |
+
size 267
|