File size: 7,540 Bytes
5a9f628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c40382
 
 
 
 
 
 
 
 
 
 
5a9f628
 
7c40382
57c9024
7c40382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a9f628
 
 
7c40382
 
 
 
5a9f628
 
 
 
7c40382
 
 
 
 
 
 
5a9f628
 
 
 
 
 
7c40382
5a9f628
7c40382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c9024
 
 
 
7c40382
 
 
 
 
 
 
 
 
 
 
 
57c9024
 
 
 
 
 
 
 
 
 
 
 
7c40382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a9f628
 
7c40382
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# coding=utf-8
# Copyright 2023 The HuggingFace Datasets Authors.
#
# Licensed under the Creative Commons version 4.0 and Mozilla Public License version 2.0,
# (the "Licenses"); you may not use this file except in compliance with the Licenses.
# You may obtain a copies of the Licenses at
#
#     https://creativecommons.org/licenses/by/4.0/
#     and https://www.mozilla.org/en-US/MPL/2.0/
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the Licenses for the specific language governing permissions and
# limitations under the Licenses.

# Lint as: python3

import csv
import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{pudo23_interspeech,
  author={Mikołaj Pudo and Mateusz Wosik and Adam Cieślak and Justyna Krzywdziak and Bożena Łukasiak and Artur Janicki},
  title={{MOCKS} 1.0: Multilingual Open Custom Keyword Spotting Testset},
  year={2023},
  booktitle={Proc. Interspeech 2023},
}
"""

_DESCRIPTION = """\
Multilingual Open Custom Keyword Spotting Testset (MOCKS) is a comprehensive 
audio testset for evaluation and benchmarking Open-Vocabulary Keyword Spotting (OV-KWS) models.
"""


#_BASE_URL = "https://huggingface.co/datasets/voiceintelligenceresearch/MOCKS/tree/main"
_BASE_URL = "https://huggingface.co/datasets/mikolaj-p/MOCKS-test/tree/main"
_DL_URLS_TEMPLATE = {
    "data": "%s/%s/test/%s/data.tar.gz",
    "transcription" : "%s/%s/test/data_%s_transcription.tsv",
    "positive" : "%s/%s/test/%s/all.pair.positive.tsv",
    "similar" : "%s/%s/test/%s/all.pair.similar.tsv",
    "different" : "%s/%s/test/%s/all.pair.different.tsv",
    "positive_subset" : "%s/%s/test/%s/subset.pair.positive.tsv",
    "similar_subset" : "%s/%s/test/%s/subset.pair.similar.tsv",
    "different_subset" : "%s/%s/test/%s/subset.pair.different.tsv",
}

_MOCKS_SETS = [
    "en.LS-clean"]
#    "en.LS-other",
#    "en.MCV",
#    "de.MCV",
#    "es.MCV",
#    "fr.MCV",
#    "it.MCV"]

_MOCKS_SUFFIXES = [
    "",
    ".positive",
    ".similar",
    ".different",
    ".subset",
    ".positive_subset",
    ".similar_subset",
    ".different_subset"]


class Mocks(datasets.GeneratorBasedBuilder):
    """Mocks Dataset."""
    DEFAULT_CONFIG_NAME = "en.LS-clean"

    BUILDER_CONFIGS = [datasets.BuilderConfig(name=subset+suffix, description=subset+suffix)
            for subset in _MOCKS_SETS for suffix in _MOCKS_SUFFIXES]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                    "keyword_id": datasets.Value("string"),
                    "keyword_transcription": datasets.Value("string"),
                    "test_id": datasets.Value("string"),
                    "test_transcription": datasets.Value("string"),
                    "test_audio": datasets.Audio(sampling_rate=16000),
                    "label": datasets.Value("bool"),
                }
            ),
            homepage=_BASE_URL,
            citation=_CITATION
        )


    def _split_generators(self, dl_manager):
        logger.info("split_generator")
        name_split = self.config.name.split(".")
        subset_lang = name_split[0]
        subset_name = name_split[1]

        if len(name_split) == 2:
            pairs_types = ["positive", "similar", "different"]
        elif name_split[2] == "subset":
            pairs_types = ["positive_subset", "similar_subset", "different_subset"]
        else:
            pairs_types = [name_split[2]]

        offline_archive_path = dl_manager.download({
            k: v%(subset_lang, subset_name, "offline") 
            for k, v in _DL_URLS_TEMPLATE.items()
            })
        online_archive_path = dl_manager.download({
            k: v%(subset_lang, subset_name, "online") 
            for k, v in _DL_URLS_TEMPLATE.items()
            })

        split_offline = [datasets.SplitGenerator(
                name="offline",
                gen_kwargs={
                    "audio_files": dl_manager.iter_archive(offline_archive_path["data"]),
                    "transcription_keyword": offline_archive_path["transcription"],
                    "transcription_test": offline_archive_path["transcription"],
                    "pairs": [offline_archive_path[pair_type] for pair_type in pairs_types],
                }
            )
        ]

        split_online = [datasets.SplitGenerator(
                name="online",
                gen_kwargs={
                    "audio_files": dl_manager.iter_archive(online_archive_path["data"]),
                    "transcription_keyword": offline_archive_path["transcription"],
                    "transcription_test": online_archive_path["transcription"],
                    "pairs": [online_archive_path[pair_type] for pair_type in pairs_types],
                }
            )
        ]

        return split_offline + split_online


    def _read_transcription(self, transcription_path):
        transcription_metadata = {}

        with open(transcription_path, encoding="utf-8") as f:
            reader = csv.reader(f, delimiter="\t")
            next(reader, None)

            for row in reader:
                _, audio_id = os.path.split(row[0])
                transcription = row[1]
                transcription_metadata[audio_id] = {
                    "audio_id": audio_id,
                    "transcription": transcription}

        return transcription_metadata


    def _generate_examples(self, audio_files, transcription_keyword, transcription_test, pairs):
        transcription_keyword_metadata = self._read_transcription(transcription_keyword)

        transcription_test_metadata = self._read_transcription(transcription_test)

        pair_metadata = {}
        for pair in pairs:
            with open(pair, encoding="utf-8") as f:
                reader = csv.reader(f, delimiter="\t")
                next(reader, None)

                for row in reader:
                    _, keyword_id = os.path.split(row[0])
                    _, test_id = os.path.split(row[1])

                    if keyword_id not in transcription_keyword_metadata:
                        logger.error("No transcription and audio for keyword %s"%(keyword_id))
                        continue
                    if test_id not in transcription_test_metadata:
                        logger.error("No transcription and audio for test case %s"%(test_id))
                        continue

                    if test_id not in pair_metadata:
                        pair_metadata[test_id] = []

                    pair_metadata[test_id].append([keyword_id, int(row[-1])])

        id_ = 0
        for test_path, test_f in audio_files:
            _, test_id = os.path.split(test_path)
            if test_id in pair_metadata:
                test_audio = {"bytes": test_f.read()}
                for keyword_id, label in pair_metadata[test_id]:
                    yield id_, {
                        "keyword_id": keyword_id,
                        "keyword_transcription": transcription_keyword_metadata[keyword_id]["transcription"],
                        "test_id": test_id,
                        "test_transcription": transcription_test_metadata[test_id]["transcription"],
                        "test_audio": test_audio,
                        "label": label}
                    id_ += 1