import os import datasets _CITATION = "https://arxiv.org/abs/2012.12453" _DESCRIPTION = "CholecSeg8K dataset for semantic segmentation in laparoscopic cholecystectomy surgery." _HOMEPAGE_URL = "https://www.kaggle.com/datasets/newslab/cholecseg8k" _DATA_URL = "data/CholecSeg8k.zip" _LICENSE= "cc-by-nc-sa-4.0" class CholecSeg8KConfig(datasets.BuilderConfig): """ BuilderConfig for CholecSeg8k dataset. Args: name (str): Name of the configuration. description (str): Description of the dataset. homepage (str): Homepage URL of the dataset. data_url (str): URL to download the dataset. """ def __init__(self, name, description, homepage, data_url): super(CholecSeg8KConfig, self).__init__( name=self.name, version=datasets.Version("1.0.0"), description=self.description, ) self.name = name self.description = description self.homepage = homepage self.data_url = data_url def _build_config(name): """Builds and returns the dataset configuration.""" return CholecSeg8KConfig( name=name, description=_DESCRIPTION, homepage=_HOMEPAGE_URL, data_url=_DATA_URL, ) class CholecSeg8K(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [_build_config("all")] def _info(self): """Returns the dataset info.""" return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "color_mask": datasets.Image(), "watershed_mask": datasets.Image(), "annotation_mask": datasets.Image(), } ), supervised_keys=None, homepage=_HOMEPAGE_URL, citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager): """Generates data splits.""" datapath = dl_manager.download_and_extract(_DATA_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"datapath": datapath}, ), ] def _generate_examples(self, datapath): """Yields examples.""" key=0 datapath = os.path.join(datapath, "CholecSeg8k") for video_folder in os.listdir(datapath): video_folder_path = os.path.join(datapath, video_folder) for clip_folder in os.listdir(video_folder_path): clip_folder_path = os.path.join(video_folder_path, clip_folder) for file in os.listdir(clip_folder_path): if file.endswith("_endo.png"): # Check for endoscopic images image_path = os.path.join(clip_folder_path, file) # Construct paths for each mask type base_filename = file.replace("_endo.png", "") color_mask_path = os.path.join(clip_folder_path, f"{base_filename}_endo_color_mask.png") watershed_mask_path = os.path.join(clip_folder_path, f"{base_filename}_endo_watershed_mask.png") annotation_mask_path = os.path.join(clip_folder_path, f"{base_filename}_endo_mask.png") yield key, { "image": image_path, "color_mask": color_mask_path, "watershed_mask": watershed_mask_path, "annotation_mask": annotation_mask_path, } key+=1