|
import pandas as pd |
|
import os |
|
|
|
|
|
def get_data_path_for_config(config_name): |
|
data_dir = "../data" |
|
return os.path.join(data_dir, config_name) |
|
|
|
|
|
def coalesce_columns( |
|
df, |
|
): |
|
columns_to_coalesce = [col for col in df.columns if "_" not in col] |
|
for index, row in df.iterrows(): |
|
for col in df.columns: |
|
for column_to_coalesce in columns_to_coalesce: |
|
if column_to_coalesce in col and "_" in col: |
|
if not pd.isna(row[col]): |
|
df.at[index, column_to_coalesce] = row[col] |
|
continue |
|
|
|
|
|
combined_df = df[columns_to_coalesce] |
|
return combined_df |
|
|
|
|
|
def set_home_type(cur_df, filename): |
|
if "_sfrcondo_" in filename: |
|
cur_df["Home Type"] = "all homes" |
|
if "_sfrcondomfr_" in filename: |
|
cur_df["Home Type"] = "all homes plus multifamily" |
|
elif "_sfr_" in filename: |
|
cur_df["Home Type"] = "SFR" |
|
elif "_condo_" in filename: |
|
cur_df["Home Type"] = "condo/co-op" |
|
elif "_mfr_" in filename: |
|
cur_df["Home Type"] = "multifamily" |
|
|
|
return cur_df |
|
|
|
|
|
def get_combined_df(data_frames, on): |
|
combined_df = None |
|
if len(data_frames) > 1: |
|
|
|
combined_df = data_frames[0] |
|
for i in range(1, len(data_frames)): |
|
cur_df = data_frames[i] |
|
combined_df = pd.merge( |
|
combined_df, |
|
cur_df, |
|
on=on, |
|
how="outer", |
|
suffixes=("", "_" + str(i)), |
|
) |
|
elif len(data_frames) == 1: |
|
combined_df = data_frames[0] |
|
|
|
combined_df = coalesce_columns(combined_df) |
|
|
|
return combined_df |
|
|
|
|
|
def get_melted_df( |
|
df, |
|
exclude_columns, |
|
columns_to_pivot, |
|
col_name, |
|
filename, |
|
): |
|
smoothed = "_sm_" in filename |
|
seasonally_adjusted = "_sa_" in filename |
|
|
|
if smoothed: |
|
col_name += " (Smoothed)" |
|
if seasonally_adjusted: |
|
col_name += " (Seasonally Adjusted)" |
|
|
|
df = pd.melt( |
|
df, |
|
id_vars=exclude_columns, |
|
value_vars=columns_to_pivot, |
|
var_name="Date", |
|
value_name=col_name, |
|
) |
|
|
|
return df |
|
|
|
|
|
def save_final_df_as_jsonl(config_name, df): |
|
processed_dir = "../processed/" |
|
|
|
if not os.path.exists(processed_dir): |
|
os.makedirs(processed_dir) |
|
|
|
full_path = os.path.join(processed_dir, config_name + ".jsonl") |
|
|
|
df.to_json(full_path, orient="records", lines=True) |
|
|
|
|
|
def handle_slug_column_mappings( |
|
data_frames, slug_column_mappings, exclude_columns, filename, cur_df |
|
): |
|
|
|
columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns] |
|
|
|
for slug, col_name in slug_column_mappings.items(): |
|
if slug in filename: |
|
cur_df = get_melted_df( |
|
cur_df, |
|
exclude_columns, |
|
columns_to_pivot, |
|
col_name, |
|
filename, |
|
) |
|
|
|
data_frames.append(cur_df) |
|
break |
|
|
|
return data_frames |
|
|