test loader with raw data
Browse files
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
-
configs:
|
4 |
-
- config_name: home value forecasts
|
5 |
-
|
6 |
# - split: train
|
7 |
# path: "data.csv"
|
8 |
# - split: test
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
# configs:
|
4 |
+
# - config_name: home value forecasts
|
5 |
+
# data_files: "processed/home_value_forecasts/final.csv"
|
6 |
# - split: train
|
7 |
# path: "data.csv"
|
8 |
# - split: test
|
zillow.py
CHANGED
@@ -130,14 +130,14 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
130 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
131 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
132 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
133 |
-
urls = _URLS[self.config.name]
|
134 |
-
data_dir = dl_manager.download_and_extract(urls)
|
135 |
return [
|
136 |
datasets.SplitGenerator(
|
137 |
name=datasets.Split.TRAIN,
|
138 |
# These kwargs will be passed to _generate_examples
|
139 |
gen_kwargs={
|
140 |
-
"filepath": os.path.join(data_dir, "train.jsonl"),
|
141 |
"split": "train",
|
142 |
},
|
143 |
),
|
@@ -145,7 +145,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
145 |
name=datasets.Split.VALIDATION,
|
146 |
# These kwargs will be passed to _generate_examples
|
147 |
gen_kwargs={
|
148 |
-
"filepath": os.path.join(data_dir, "dev.jsonl"),
|
149 |
"split": "dev",
|
150 |
},
|
151 |
),
|
@@ -153,7 +153,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
153 |
name=datasets.Split.TEST,
|
154 |
# These kwargs will be passed to _generate_examples
|
155 |
gen_kwargs={
|
156 |
-
"filepath": os.path.join(data_dir, "test.jsonl"),
|
157 |
"split": "test",
|
158 |
},
|
159 |
),
|
|
|
130 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
131 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
132 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
133 |
+
# urls = _URLS[self.config.name]
|
134 |
+
# data_dir = dl_manager.download_and_extract(urls)
|
135 |
return [
|
136 |
datasets.SplitGenerator(
|
137 |
name=datasets.Split.TRAIN,
|
138 |
# These kwargs will be passed to _generate_examples
|
139 |
gen_kwargs={
|
140 |
+
"filepath": 'data/home_value_forecasts', # os.path.join(data_dir, "train.jsonl"),
|
141 |
"split": "train",
|
142 |
},
|
143 |
),
|
|
|
145 |
name=datasets.Split.VALIDATION,
|
146 |
# These kwargs will be passed to _generate_examples
|
147 |
gen_kwargs={
|
148 |
+
"filepath": 'data/home_value_forecasts', # os.path.join(data_dir, "dev.jsonl"),
|
149 |
"split": "dev",
|
150 |
},
|
151 |
),
|
|
|
153 |
name=datasets.Split.TEST,
|
154 |
# These kwargs will be passed to _generate_examples
|
155 |
gen_kwargs={
|
156 |
+
"filepath": 'data/home_value_forecasts', # os.path.join(data_dir, "test.jsonl"),
|
157 |
"split": "test",
|
158 |
},
|
159 |
),
|